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1 Introduction

A modular robotic system is an assemblage of parts that
can be restructured to an optimal configuration depending
on changes in the task, environment or operating
parameters.  These systems are typically composed of a
few standard modular units, with a common interface.
Parallel robots, as their name implies, can employ several
legs to connect the base to the end effector.  The excellent
force to weight and stiffness capabilities of a parallel robot
allows for greater flexibility in the modular components.
A configuration engine is a computer program that allows
modular devices to be optimally assembled for a specified
task.   The mechanical flexibility increases the possible
applications, and allows for different robot structures to be
examined.  The configuration engine can also determine
what modules and module criteria are actually required for
the optimal configurations.
The research on modular robot systems has typically been
conducted on the optimization of the configuration with
an unalterable set of modules.  Therefore the criteria
required of the modules to produce the optimal
configurations, have yet to be examined.  Once an engine
has been developed, the modules can be easily varied to
track the effect on the population, hence determining the
required module criteria.
This paper examines the theory required for a modular
parallel robot configuration engine.  Possible evaluation
criteria are identified, as well as calculation methods.  An
optimization method is proposed to be combined with the
calculation methods for these criteria to form the main
program structure. Methods for the program
implementations are discussed, as well as the possible
directions of future work.

2 Optimization Criteria

Four possible traits for optimization are being examined
for this configuration engine: workspace, dexterity, weight
and size, and accuracy error.

Workspace: The possible workspace of the mechanism is
of principal importance for the configuration process.
Without the ability to resolve the workspace it is
impossible to say if the robot can complete any tasks.  The
general workspace analysis employed for this
configuration engine, consists of determining the distance
each leg is required to span for each task point, using a
loop closure method [1].  Once this is accomplished the
individual legs are analyzed to determine the maximum
and minimum lengths they could reach, using a
multivariable linear search over the leg joints.  The
difference between the required distance and the reachable
distance is the evaluated number passed to the objective
function for the engine.

The workspace evaluation (WE) criteria is defined in
equation (1), where L is the length of the leg.  The WE is
further divided into negative (WEO) and positive
components (WEI), for points outside and within the
workspace respectively.
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Dexterity: Dexterity, another important criterion of the
robot configuration process, is a measure of the ability of
the system to affect the environment at a point. Many
methods use the dexterity criterion in the configuration
optimization since it can also be used to examine the
singularities for a given trajectory [2].  For the dexterity
analysis, the Jacobian of the parallel manipulator must be
found, and the eigenvalues determined using a singular
value decomposition method [3].  The ratio of the smallest
and largest eigenvalues, combined with the smallest
eigenvalue can then be taken as a measure of the dexterity
and used in the objective function.  This gives the second
criteria in the form shown in equation (2), where DE is the
dexterity evaluation, σ is the eigenvalue and w is the
weighting factor associated to the eigenvalue.
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Weight and Size: The weight and size criteria can be
modeled as simple constraints for the optimization
routine. The weight and size model can be taken as the
summation of weight and size values associated with the
module types used. The weight and size can then be
combined to provide the overall weight and size
evaluation (WSE), as shown in equation (3), where wj and
sij indicate the weight and size of the modules, and j
indicates the number of the module.
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Accuracy Error: The accuracy error of the end effector
can also be a criterion for the design of modular systems.
The error will be formulated using a worst case scenario
for the individual legs and a stochastic model for the
combination of those legs.  The error will be added for the
serial leg component and averaged for the total number of
legs.  Given a maximum error value from the user, a
multivariable linear optimization routine will deduce the
largest possible tolerances of the modules.  The evaluated
number will therefore be the tolerance cost evaluation
(TCE), and will be calculated as shown in equation (4),
where Ti is the joint tolerances joint i and N is the number
of legs of the device.
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3 Program Methodology
The program can be separated into six segments, the input,
population initialization, objective function generation,
population evaluation, optimization algorithm and output.
A flow chart of the program is presented in Figure 1.

Figure 1.  Program Flow Chart.
The configuration engine requires the task definition,
operating conditions, available modules, optimization
criteria and optimization algorithm variables as input.  The
task is currently defined as a series of points in space that
the robot must reach and operate at.
The population initialization section contains the
algorithm that creates the first population and determines
the starting point for the optimization routine.  The initial
parallel configurations are generated randomly based on
the degree of freedom (DOF) and available modules.
The objective function section controls the criteria that are
being considered and their weighting factors.  The user
can to choose the criteria to be optimized.   The weighting
factors are required to allow for the scaling of the different
criteria evaluations and are dependent on the DOF of the
device.  The objective function (OF) can be seen in
equation (5) where the Fi, i = 1 to 5, are the weighting
factors for the different criteria.
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The population evaluation is the control component of the
program.  The population evaluation evaluates the
individual criteria and combines them using the objective
function. The total and highest evaluation score can then
be determined and used to process several decisions, such
as the redefinition of the optimization algorithm variables
or used as the stop criteria for the program.
The optimization algorithm creates a new population
generation using a variation of the Adaptive Simulated
Annealing and Genetic Algorithm (ASAGA) process [4].
The ASAGA process is a genetic algorithm (GA) with a
simulated annealing (SA) mutation component.  The GA
applies biological evolution laws to a population to form a
new, evolved, population.  There are three laws that are
applied by the GA, reproduction, crossover and mutation.
For this work the mutation process has been replaced by a
SA method to increase the speed and reliability of the
algorithm.  The optimization variables, which control the
rates of reproduction, crossover and mutation, are
redefined by the engine or changed by the user if the

optimization does not improve the total population
evaluation score.
The output displays the best configuration available, at
each iteration and for the final population, as an array and
with its evaluation score.  Other displayed factors include
the number and type of modules used, failures in task
completion and the number of cycles required for the
convergence of the optimization algorithm.
4 Results
The configuration engine has been completed for two
evaluation criteria, workspace and size and weight.
Currently it only has three simple modules available for
the configuration, one revolute (R) type and one prismatic
(P) type of joint modules and one static type of link
module. The engine was successfully tested by giving
points known to be within the workspace of a planar
parallel robot (Figure 2b).  The engine identified two other
known parallel structures, one similar to the one in Figure
2a, and one with RRP legs.

Figure 2.  Generated Linkages [5].
5 Future Work
Further criteria components, such as the ones mentioned,
will be added time permitting.  Other criteria than the ones
mentioned here could include the force capabilities, fault
tolerance of the robot and path planning for self-
reconfiguring robots.
Modified modules will be given to the configuration
engine to determine the criteria that the modules require in
producing the optimal configurations.  In addition, the
task definition could be changed to include trajectories as
opposed to points.  The evaluation criteria methods would
have to be altered in relation to the changes in the task
definition.
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