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Abstract 3. Velocity Equations

This paper presents a general and systematic analysis of pla- Starting from the length of the link p;, connecting point
nar parallel mechanisms actuated with cables. The equations P to pointV;, p? = (c + Qv; — pi)" (c + Qv; — p;), we
for the velocities and the forces in the cables are presented. obtain the following matrix form of the velocity equations:
Then, a detailed analysis of the workspace is performed and Ap =Bt (1)
an analytical method for the determination of the boundaries _

of an x-y two-dimensional subset is proposed. The new no- Where the Jacobians andB and vectorg andt are

tion of dynamic workspace is defined, as its shape depends [ p1 O 0
on the accelerations of the end-effector. We demonstrate that 0 po 0
. . _ _ | (Ad)kxe O
any subset of the workspace can be considered as acombina- A = . = 0 A
tion of three-cable sub-workspaces, with boundaries being : ®
of two kinds: two-cable equilibrium loci and three-cable sin- L 00 Pn
gularity loci. bT
by (Ba)k 3
—_ _ X &
1. Introduction B = : | (B
. . _ b7 *) (n—k)x 3
Many studies have been performed concerning various types L Pn Jnxs
of parallel mechanisms, but few of these involve manipu- T [ T -
lators actuated with cables. However, the advantages of Pi = (C +Qv; — Pi) ((C - Ppi) EQVz‘)
this type of actuation are numerous and incontestable [1]. S 7 T
Firstly, cables allow incomparable motion range, that is p = [ L N ] b= [ Ty ¢ }

much Iarger than that of conventional actuators, and, as the Indicesa ands refer respective|y tactuatorsandsprings
cables are being used only in tension, they are, for a similar

task, much thinner and lighter than most conventional actu- 4. Forces in cables
ators. Also, being much more flexible, they provide a kind
of natural protection in the case of interference.

The unilaterality of actuation imposed by the use of T . .
cables involves a workspace considerably different from the ¥ = [ Fe By T ] = [ m(&+g) I ] and where
workspace corresponding to standard manipulator with a /i iS the tension in link, and £, F,, andr are the forces
similar geometry. This workspace does not depend so much 2nd torque applied by cables and springs to the end-effector.
on actuator length limits but more on the inability of cables T the configuration and the accelerations are known, we
to generate compression. The fact that cables can generate/nally get an equation in the forfUf, = h there fla
tension only imposes the utilization of actuation redundancy 'S the vector of forces in cabledJs ., = —B, A",

— _ TA -1 i i
if full control of all degrees of freedom is desired. Redun- P3x1 =F —F, andF, = —B; A 7f,, with f; being the
dancy has the positive effect of reducing or completely eli- vector of forces in springs arid, is the vector of forces and

minating singularities in the mechanism. torque applied by springs on the end-effector.
Two main cases then arise:

From the principle of virtual work, one can write
—fT6p=FTéx, where f'=[fi fo ... fu],

2. Generalities e Isostaticcasei(=3)  The only solution is obtained

A moving object is actuated in the plane hyinks (k actu- from f, = U~ 'h.

ated Iinks', e.g. cables, amd— k'passive'links, e.g. springs). e Hyperstatic casek( > 3) There exists an infinite
Thesen links connect respectively points, ... P, on the number of solutions. The minimum norm solution is
base and/; ...V, on the end-effector. The position vector obtained fromf, = U'h whereU is the generalized

of point P; is defined by vectop; expressed in the fixed inverse ofU,written asU’ = UT(UUT)~!. This so-
reference frame, attached to the base, whereas the position lution does not guarantee that the componenfs will
vector of pointV; is defined by vectow; expressed in the be positive, i.e. that all the cables are in tension. The
mobile reference frame, attached to the end-effector, the ori- problem to solve is then:

gin of which is at the center of mass of the end-effector. The
position of the mobile frame’s origin, poiit, is defined by
. . . . ! . Uf,=h
vectorc, while its orientation relative to the fixed frame, is under )
given by angles. foi 20 ¢

min £7f,

|
—
~



Solving this problem is achieved through the use of

quadratic programming [2, 3]. The issue addressed in the
next section is the determination of the set of configurations
for which a solution to this problem exists.

5. Workspace

Since the shape of the workspace depends on the accele-

rations of the end-effector, we must now refer to dynamic
workspace, static workspace being only a particular case for
which all accelerations are zero. We now consider the set of
configurations for which a specific dynamic equilibrium is
possible. We define the dynamic workspasehe set of all

configurations{z, y, ¢} and dynamic condition$:i,gj,¢§}
for which all cables work in tension.

In the case for whicm = k (no spring),h = F and we
obtainUf, = F that we can write in the following way:

()

where coefficientsf; (forces in cables) must all be posi-
tive or zero—cables cannot work in compression. For some
known anglep, the workspace is the set of all possible con-
figurations{z, y} for which vectorF can be obtained from
any vectorial sum of vectora; (columns ofU), but using
only positive or zero coefficients;. That means that vec-
tor F must be inside a pseudo-pyramid made up of vectors
u; in a three-dimensional virtual space, in which the three
dimensions are along,, Fy, andr.

Figure 1 is a representation of such a pseudo-pyramid
where vectorau,, us, uy, andus define four planes that
make up the faces of the pyramid,( ug andF are inside).
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Figure 1: Pseudo-pyramid.

We see from Fig. 1 that every workspace configuration
can also be achieved by one particular combination of three
cables (14,u5 andug in that example) since any pseudo-
pyramid is in reality a union of three-vector basic pyramids.
This does not guarantee that this three-cable combination
will be optimal with regard to forces but only that any con-
figuration is reachable using only three of the cables. Then,
the whole workspace is the union of sub-workspaces corres-
ponding to all 3-cable mecanisms.

When investigating the workspace, we are interested in
determining its boundaries. As it can be seen with the
pseudo-pyramid, there are two ways for the system to be

on one of these boundaries. In the first one, veEtdie on
one of the pyramid faces (plane in the figur&)can there-
fore be applied to the effector using only two of the vectors
u; and, in this case, we face a two-cable equilibrium. In the
second one, at least three vectors are coplanaFaisdhe
only vector on its side of the plane of these vectors. In this
case, the system is on a singularity boundary.

6. Determination of the workspace boundaries

The first step of the simple method that we propose is the
creation of every 2-cable combination quadratic of equili-
brium and every 3-cable combination singularity quadratic
[4]. Then, we intersect the curves with each other to create
a set of sections. We then test every section to determine
if it belongs to the boundary of the workspace or not. Both
two-cable equilibrium and singularity sections can be tested
easily by simple geometrical conditions. Figure 2 shows the
resulting workspace for a particular dynamic state.
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Figure 2: Complete workspace
(¢p= 25°,% = Tm/s?, p= —5 rad/s?).

7. Conclusion

A fundamental and systematic analysis of planar parallel
manipulators actuated with cables has been performed. Par-
ticularly, the workspace was analyzed by introducing the
new concept of dynamic workspace as it depends on the
accelerations at the end-effector. An algorithm for the deter-
mination of anx — y workspace (a two-dimensional subset
of the dynamic workspace) has been proposed.
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