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1. INTRODUCTION

Over the past two decades, a number of approaches have
been developed for systematically formul ating the equations
of motion for multibody systems. Principles of analytical
and vectorial mechanics have been combined with topolog-
ical representations, so that the dynamics of a wide range
of mechanical systems can be automatically and efficiently
analyzed [1].

Several authors have recently proposed extensions to the
Principle of Virtual Work (and/or Lagrange's Equations) so
that electrical components can be included in a model of a
“mechatronic” system [2-4]. In these papers, the mecha-
tronic system consists of rigid multibody sub-systems and
electrical networks of analog components (resistors, capac-
itors, etc). Although linear graph theory is used to gener-
ate Kirchoff’s laws for the electrical sub-systems, it is mis-
perceived as being inefficient [2] and is dismissed as a uni-
fied modelling theory.

In fact, linear graph theory provides a natural represen-
tation of multi-disciplinary problems and, when combined
with principles of mechanics, results in efficient models for
electro-mechanical multibody systems. The application of
graph theory to electrical networks has long been estab-
lished [5] and, more recently, graph theory has been com-
bined with principles of vectorial [6] and analytical mechan-
ics[7] to obtain systematic formulations for rigid and flex-
ible multibody systems. The extension of these methods to
electro-mechanical systems isnatural and straight-forward.

Figure 1. Two-Link Robot Driven by DC Motors

2. SYSTEM MODELLING

To demonstrate this, consider the example in Figure 1 in
which a two-link robot arm is being driven by two DC-
motors powered by voltage sources V; and V. Thetopology
of thiselectro-mechanical system isencapsulated by thelin-
ear graph representation shown in Figure 2.

In contrast with other representations, e.g. bond graphs,
the linear graph is relatively simple and bears a striking re-
semblance to the physical system. This is emphasized by
overlaying the graph with the links and motors in dashed
lines. The edges of the graph correspond directly to physical
components: J1 and J2 are the two revolute joints, »r3—6
represent the location of these joints relative to body-fixed
reference frames, M7 and M 8 are the two motors, and V'1
and V2 are the voltage sources.

Figure 2. Linear Graph of Two-Link robot

Note that the electro-mechanical transducers, the DC-
motors, are represented by two edges — onein the mechan-
ical system and one in the electrical network. The dynamic
equations for the two sub-systems are coupled by the con-
stitutive equations for the motors:

where V; and I; are the voltage across and current through
motor M: (i = 7,8), T; and 6; are the motor torque and
speed, R; and L; arethe armature resistance and inductance,
K; and C; are the voltage and torque constants, and B; and
J; are the damping coefficient and inertia of the motor shaft.



Using graph-theoretic topological equations and princi-
ples of mechanics, the dynamic equations for the mechan-
ical sub-system can be systematically formulated in abso-
lute coordinates, joint coordinates, or some combination of
these and other coordinates [6]. Furthermore, the mechan-
ical equations can be expressed in either recursive or non-
recursive formats. For this example, the dynamic equations
are automatically generated in terms of the joint coordinates
6, and 8-, using symbolic Maple routines[ 7] that exploit the
topological equationsto reduce the number of variables and
equations, and virtual work to eliminate non-working joint
reactions.

These Maple routines have been extended to include
models of electrical networks and a number of electro-
mechanical transducers. A graph-theoretic approach again
allows some freedom in selecting the system variables; the
electrical sub-system equations are automatically formu-
lated in currents or voltages, as desired by the user.

Assuming the links to be rigid in the robot example, our
dynamic formulation produces two symbolic second-order
differential equationsfor the multibody sub-system:
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Had the links been modelled as elastic beams, additional
equations would be generated for the elastic coordinates,
which would aso appear in the mass matrix [M] and gen-
eralized forces {Q}. Selecting currents as the variables for
this problem, two first-order differential equations are ob-
tained for the electrical sub-network:
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Thus, a minimal number of system equations (3-4) is auto-
matically generated by the graph-theoretic formulation and
symbolic implementation. Although the electrical networks
in this example are relatively trivial, networks of any com-
plexity can be efficiently treated using graph theory.

With the equations expressed in symbolic form, it is of-
ten possibleto find closed-form solutionsfor the generalized
inverse dynamics problem. In this case, given desired joint
trajectoriesof 8; = #; = /8, i.e. bothlinksrotate through
90 degreesin 4 seconds, one can solve (3-4) to get analytical
expressions for the required motor currents:
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This solution can be verified by a forward dynamic sim-
ulation in which the motor input voltages are regulated by
a PD-controller to respond to errorsin the joint trajectories.
For this case, a humerical integration of equations (3-4) re-
sults in the motor currents shown in solid line in Figure 3.
As expected, they oscillate about the analytical solutions (5-
6) shown in dotted lines.

120

100y

(2] o]
o o
T T

Current (A)
N
o

2
Time(s)

Figure 3. Motor Currents Required for Given Joint Trajectories

3. CONCLUSIONS

In summary, a unified and efficient modelling methodol-
ogy for electro-mechanical multibody systems has been ob-
tained by combining linear graph theory with principles of
mechanics. From a single graph representation, a relatively
small number of system equationsisgenerated in amethodi-
cal manner that iswell-suited for computer implementation.
It isalso worth noting that a graph-theoretic approach is not
restricted to analog components, in contrast to approaches
based solely on virtual work [2-4]. Thus, components of a
discrete-time nature can be readily included in a model of
amechatronic system containing digital controllers; this ap-
pears to be a promising area for future research.
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