
A model-based visualization technique for mechatronic systems.

Jochen Stier
Department of Computer Science

University of Victoria, Victoria, Canada
jstier@cs.uvic.ca

Jens Jahnke
Department of Computer Science

University of Victoria, Victoria, Canada
jens@cs.uvic.ca

May 6, 2003

Abstract

Three-dimensional computer graphics are a valu-
able tool for the design and analysis of mechatronic
systems, such as manufacturing, robotics or trans-
portation systems. Computer-generated models can
present an intuitive and flexible interface to design
the structure and dynamics of a system before costly
physical prototypes are developed. However, the dy-
namics of mechatronic systems can be complex and
it is challenging to create functionally correct visual-
izations. Techniques are needed to describe the be-
havior of a system and integrate it with a computer
graphic model. Petri Nets are an effective formalism
to model many types of dynamical system. Inter-
preting a Petri Net produces continuous and discrete
values that can be used to control, or animate a com-
puter graphic model. The proposed research investi-
gates using Petri Nets as a visualization language for
rapid prototyping of mechatronic systems.

1 Introduction

Mechatronic systems are hybrids of electronics, me-
chanics and software. They are deployed in increas-
ingly complex applications, and it requires reliable
and scalable methods to support their design and
development. While current graphic modelling tech-
niques routinely produce static models, it is still chal-
lenging to incorporate the dynamics that are required
for a functionally correct visualization.

The nature of a Mechatronic system is determined
by a combination of physical and computational pro-

cesses. Modelling this type of system requires tech-
niques that are well suited to describe both discrete
and continuous processes. This paper presents an
approach for simulating mechatronic systems uses a
hybrid modelling language [1]. Hybrid systems are
dynamical systems that consist of interacting contin-
uous functions and discrete events. They arise from
the interaction between discrete planning and con-
tinuous control algorithms and they are well suited
to describe the computer aided processes of complex
mechatronic systems [2]. A part arriving at a work
cell, for example, is a discrete event with respect to
production planning, yet it also triggers a continuous
and timed manufacturing process.

Research in the field of computer science, and in
particular control theory have produced a number of
formalism that facilitate the modelling of hybrid sys-
tems [1]. Among those are Petri Nets, a graph-based
language for concurrent processes [3]. Petri Nets pro-
vide an intuitive set of constructs to describe concur-
rency, synchronization and conflicts in discrete-event
data driven processes. Extensions to the formalism
that incorporate time provide the continuous vari-
ables necessary to evaluate the functions of a hybrid
process.

Advantages of Petri Nets include that they are
symbolic, concurrent, and favour modularitzation.
Their graph-based nature allows for an intuitive and
flexible user interface that supports the design and
maintenance of complex models. Integrating com-
puter graphic techniques with a modelling language
like Petri Nets enhances the power of the formalism.
Three-dimensional images convey information intu-

1



itively and provide a natural context for the design
a system. These advantages result in additional cog-
nitive support to the design process and ultimately
lead to improvements that reduce development time
and cost.

This paper presents RealFusion, a structured lan-
guage that integrates Petri Net theory with computer
animation techniques. This work has been inspired
by earlier applications of Petri Nets in modelling and
controlling mechatronic systems, e.g., [4]. A mod-
elling tool has been created that supports RealFusion
and presents an interactive user interface to produce
complex visualizations. The following section intro-
duces the constructs of RealFusion, such as Scene
Trees and Petri nets. Section 3 outlines the Real-
Fusion language and its constructs. Interpretation
mechanisms and tool support for executing RealFu-
sion models are discussed in Section 4. While sec-
tions 3 and 4 can be seen as presenting the syntax
and semantics of RealFusion, respectively, Section 4
discusses pragmatic issues on how a user would use
our approach. This is outlined with a sample case
study. Section 6 compares this approach to related
work and Section 7 closes with concluding remarks
and gives pointers to future work.

2 Concepts

This section gives an overview of Petri Net theory
and Scene Trees. In our approach, a Scene Trees
models the three-dimensional structure of a system
and a Petri Net models its dynamics.

2.1 Computer Graphics

Three-dimensional computer graphics are the result
of rendering the mathematical representation of a
scene onto a display device. An animation occurs by
changing the parameters that define a scene between
consecutive rendering steps, or frames. There are dif-
ferent strategies for how to organize and animate a
three-dimensional scene [5].

2.1.1 Scene Tree

Scene trees are a common technique to organize
a three-dimensional scene and address its content.
They are the specification language or internal data
structure for many virtual reality languages and ren-
dering environments, including Open Inventor and
VRML. A scene tree maintains a three-dimensional
model as a tree of differently typed nodes, such as
transformation matrices, geometries, material nodes
and light sources. Each type of node contains fields
that store the current state of the node. Transforma-
tions, for example, include fields that contain matrix
components for rotation, translation and scale. For
each frame of an animation the tree is traversed and
the state and order of the nodes determines the re-
sulting image.

In general, the structure of the tree describes the
spatial organization of a scene. A book residing on
a table, for example, is a child of the table. Chang-
ing the location or orientation of the table also af-
fects the book. Rearranging the structure of the tree
creates or destroys these dependencies. This process
is analogous to assembling or disassembling objects.
With appropriate scene trees it is possible to describe
complex structures such as manufacturing facilities,
including the arrangements of all moveable parts and
the realistic representation of their shapes.

2.1.2 Animation

An animation occurs when the structure of the scene
tree or the content of its nodes changes between ren-
dering steps. There are numerous techniques that
produce many kinds of animation effects [5]. B-
Splines curves, for example, are common numerical
method to describe the shape of an object. The shape
changes with the location of the control points that
define shape of the spline. Inverse kinematics is an
example of an algorithmic technique that controls the
joints in a kinematic chain. The algorithm automat-
ically computes the angular velocities at the joints in
such a way that it causes the chain to reach for a
point in space. The Open Inventor architecture sup-
ports animation engines and interpolators that can
be used to encapsulate arbitrary forms of animation.

2



2.2 Petri Nets

A Petri Net is directed graph composed of passive
and active vertices. The passive elements are called
places and the active elements are called transitions.
Arcs connect transitions to sets of incoming and
outgoing places. The places contain tokens that can
cause transitions to occur and trigger state changes
in the Petri Net. During an occurrence, a transition
consumes tokens from its incoming places and
deposits tokens on its outgoing places. A transition
may only occur when there is enough tokens in
its incoming places, enough capacity in its outgo-
ing places and a guard function evaluates to true.
Formally, a basic form of Petri Net is defined as tuple

N = 〈P, T,A, w, k,m0〉
P - set of Places
T - set of Transitions
A - set of Arcs: A ⊆ (P × T ) ∪ (T × P )
w - weight function of A: w(a) → N0 : a ∈ A
k - capacity function of P: k(p) → N0 : p ∈ P
m0 - initial Marking: m0(s) → N0 : p ∈ P

The set of tokens residing on all the places in a net
at an instance in time is called a marking. An initial
marking is the very first set of tokens that is specified
as part of the model. All other markings thereafter
are the result of occurring transitions. The set of
possible markings and the corresponding transition
occurrences describe a reachability graph. Based on
this graph, there exist a number of formal analysis
techniques that allow mathematical proofs about the
behavior of the system. Some of these methods can
detect deadlocks or unreachable states.

Figure 3 shows a simple Petri Net of two places
(P1 and P2) and one transition (T1). The constructs
of the diagram are annotated with the appropriate
functions. In this example T1 is enabled and can oc-
cur. P1 contains enough tokens to satisfy the weight
of arc A1 and P2 has enough capacity to accept the
weight of A2. However, the transition can only occur
once before P2 is full.

Since their original inception by Carl Adam Petri
in 1962, Petri Nets have evolved into a wide range
of dialects. While state changes in the original Petri

Figure 1: A simple Petri Net

Net are discrete and instantaneous, there are exten-
sions that incorporate time with places, transitions
or arcs. Other extensions, such as colored or object-
based [6] Petri nets treat the originally type-less to-
kens as abstract data types or objects. Hierarchical
Petri Nets [7] modularize the otherwise flat net struc-
ture by embedding separate Petri Nets within places
or transitions, or by treating entire nets as tokens
[8]. Continuous and Hybrid Petri Nets [4] incorpo-
rate special token and transitions types that are con-
tinuous rather than discrete.

In general, the two-dimensional structure of the
net defines the conditions under which events occur,
and describes in discrete steps how a process pro-
gresses over time. It is possible to model a hybrid
process by attaching continuous functions to timed
constructs. The functions become active as tokens
travel and the timed variable continually evaluates
the function. Following is an introduction of the Petri
Net constructs and some of the possible extensions to
their functionality.

2.2.1 Guard functions

Transition guard functions determine when and if en-
abled transitions can occur. Priority and probability
functions, for example, resolve conflicts between con-
currently enabled transitions. It is possible that the
occurrence of a transition disables another one by re-
moving some of the tokens it needed. In that case
a priority or probability decides which one can oc-
cur. Transition delays are another example of guard
functions that control the maximum occurrence fre-
quency. After an occurrence, a transition remains

3



disabled for the duration of the delay. Generally, a
guard function may be any type of Boolean function.

2.2.2 Inhibitor and Test Arcs

Test and inhibitor arcs [9] enable or disable transi-
tions according to the contents of the places they are
connected to. The difference between these and nor-
mal arcs is that they do not consume or produce any
tokens. Although these types of arcs are very differ-
ent from the traditional ones, there exist reduction
rules that produce equivalent Petri Nets without in-
hibitor arcs.

2.2.3 Colored Petri Nets

Colored Petri Nets [10] are the foundation of higher-
level nets, such as object-based or object-oriented
Petri Nets. Colors refer to typed tokens that re-
sult from folding places or transitions of a simple
Petri Net into one. This reduces the size of a net
and provides more expressive modelling constructs.
Sufficiently large color sets can produce arbitrarily
complex token types and arc weight functions.

2.2.4 Petri Nets with time

There are several ways to incorporate time into a
Petri Net. For example, by associating delays with
transitions or places. In a timed Petri Net [2], for ex-
ample, delays are associated with transitions. When
a timed transition occurs it removes the tokens from
the incoming places and reserves capacity on the out-
going places. Only after the time interval has expired
are the tokens committed to the outgoing places.
Similarly, in a time Petri Net delays are associated
with places. After a token enters a place it remains
hidden from outgoing arcs for the duration of the de-
lay.

2.2.5 Hierarchical Petri Nets

Hierarchical Petri Nets introduce nested modules to
the language. A module, or page, is a Petri Net that
publishes a set of places or transitions as an interface.
Constructs outside the page can then connect arcs to
the interface. Depending on the type of constructs

that are published, a page may behave like a place or
like a transition. Place refinement, or transition re-
finement [7] are specialized forms of hierarchical Petri
Nets. In the case of place refinement, for example, a
page only has an interface of places and therefore be-
haves like one.

2.2.6 Higher Order Petri Nets

Higher order Petri Nets allow entire pages to be to-
kens. Connecting to a page carrying token while it
resides on a place, dynamically changes the structure
of the Petri Net. With dynamic place refinement [8]
tokens carry the content that refines a place. Spe-
cialized port places provide an interface equivalent
to that of a page, except that connections to the in-
terface are only instantiated when a page carrying
token enters the port. The connections remain in
place while the tokens reside on the port.

3 Modelling Constructs

This section introduces how the Petri Nets and scene
trees are integrated into a modelling language. The
essence of the approach is that nodes from the scene
tree become tokens in the Petri Net and that anima-
tion functions annotate places and transitions. The
animation functions model continuous processes and
the strucutre of the Petri Nets model descrete logic.

3.1 Continous Control

The continous modeling constructs includes chang-
ing the structure of the scene tree as well as altering
the content of its nodes. Open Inventor engines are
functions that change the node content, and opera-
tions like insertions and deletions are the functions
that change the tree structure. The default set of
engines includes interpolations of translations, rota-
tions and floating point values. An engine attaches
its output values to the fields of a scene tree node
and continuously changes the appearance or location
of objects. Engines can also control rendering condi-
tions like lighting, shading or levels of detail.

4



3.2 Descrete Control

The discrete modeling constructs include a number of
Petri Net extensions. Applications of Petri Nets of-
ten combine several extensions to create formalisms
that are best suited for a particular domain. The fol-
lowing section gives an overview of the the Petri Net
constructs chosen for this application. The examples
are illustrated with images from the RealFusion de-
velopment environment.

3.2.1 Tokens

The token color space is divided into two classes, each
with a fixed number of colors. The resource token
class consists of scene tree nodes and the control token
class consists of integers. The integer tokens are type-
less and they are used to describe buffers or counters.
The resource tokens contain computer graphic con-
structs like transformation matrices, material tables
and vertex arrays to which animation functions are
applied by an executing Petri Net. Each resource to-
ken contains an additional bit vectors to hold domain
specific state information. Arc weights, place capac-
ities and markings are always a sub set of these two
classes of tokens.

Figure 2: Resource Tokens (left) and Control To-
kens(right)

Figure 2 shows the graphical representation of the
two color spaces. Each single square including a set
of indicators represents one token and its attributes.
Common to all resource colors is an indication of the
node type that occupies that color. Icons commonly
used with Open Inventor indicate the different types.
The development tool propagates that type informa-
tion through the Petri Net and therefore always in-

dicates the proper token types. Graphical widgets
like those in Figure 2 display the contents of transi-
tions, places and arcs. However, different attributes
are shown for each construct.

3.2.2 Places

Places maintain a token queue and animation engine
for each resource color. A time interval is associated
with each position in the queue and when a token has
reached the end of an interval it becomes available for
outgoing arcs. If it is not removed, then it continues
to the next location in the queue. The animation
engine attaches to the fields of a token when it enters
the place, and disconnects when a token exists the
place.

Figure 3: The content view of a Place

Figure 3 is an example of a place marking view.
This place has a capacity for four types of resource
tokens and three types of control tokens. A high-
lighted background indicates that the colors are cur-
rently marked and that tokens are residing on that
place. The types of the tokens bind two of the re-
source colors to a transformation and separator node.
The remaining resource colors are still un-typed, be-
cause there exists no token in the Petri Net that can
reach this place on those colors. One marking is addi-
tionally annotated with a bit vector that will be part
of arc expressions.

3.2.3 Arcs

The Arc weight is a subset of the color space defined
for the place it is connected to. The weight of an

5



arc leaving a place describes the marking necessary
to enable the arc, and the weight of an arc entering
a place describes the capacity required to enable the
arc. The total weight is the combination of different
weight functions for each color. Only if the weight
of all specified colors is satisfied can the arc becomes
enabled and cause a transition to occur.

An arc only deposits or removes single resource to-
kens, and the weight function for this type is either a
Boolean true or false. An additional bit vector may
also be part of the expression. Arcs that remove to-
kens compare the bit vector with that of a token and
arcs that deposit tokens manipulate the bit vector.
The arc weight also includes an index that refers to a
position in the token queue of the place it connects to.
An arc removes and deposits tokens at the location
indicated by the index.

The weight function for control tokens is a number
and an optional operator. If an operator is specified
then the weight for this color is a test expression.
A test weigh compares the marking or capacity of a
place to the value of the arc weight. During an occur-
rence no tokens are moved when the weight function
is a test.

Figure 4: The content view of an Arc

Figure 4 shows the view of an arc originating from
the place of Figure 3. The color types that compose
the arc weight are also highlighted. This arc is not
enabled because the place does not contain the neces-
sary un-typed resource token. However, the remain-
ing colors of the weight are satisfied. In addition, the
view also shows how to incorporate the bit vector into
the expression.

3.2.4 Transitions

Transition occurrences are instantaneous and
guarded by a probability and a priority. When a
transition occurs it applies instantaneous functions
that change the structure of the scene tree to the
sets of resource tokens it consumes and produces.
This includes creating or deleting entire nodes or
subtrees. Every resource token a transition produces
must be initialized with a node of the proper type.
This node is either obtained from one of the set of
incoming tokens or from a function that creates a
new node.

Figure 5: The content view of a Transition

Figure 5 shows the view of the transition connected
to the arc of Figure 4. The view is used to specify
the mapping between the incoming and outgoing col-
ors. In this example, the transition produces two
outgoing tokens that are both mapped to an incom-
ing transformation token. The new tokens are going
to be copies of the incoming one. The other two in-
coming tokens do not propagate any further because
they are not mapped to any of the outputs. There
is no need to map the control tokens, because they
are type-less. The transition view does therefore not
include control tokens.

3.2.5 Pages

A page is a single Petri Net that always attaches to
a node in the scene tree. The initial marking of re-
source tokens in the page originates from the sub-tree
rooted at that node. A path starting at the root node
identifies the location of each resource token in the

6



marking. When a page is first instantiated, it marks
the Petri Net with the resource tokens it extracts
from its scene tree.

The interface to a page is specified in terms of
links and references that are complementary build-
ing blocks to create dynamic connections. A link is
a virtual place and a reference is a pointer to a real
place. The interface constructs are embedded in the
page where they can connect to places and transi-
tions.

Figure 6: A Petri Net page with two interface constructs

Figure 6 shows a link connected to a transition and
a reference connected to a place. The links always
have zero capacity and can therefore not satisfy arcs
that have a non-zero weight. As a result, transitions
that are connected to links remain disabled and can
not occur.

3.2.6 Ports

A port is a place that can create dynamic connections
to tokens that carry pages. Part of a port is a set
of user defined references and links that can connect
with the places or transitions in the same page as
the port. When a page carrying token enters a port
the links and reference of the token are matched with
the references and links of the port. After that, the
arcs connected to the links become attached to the
places pointed to by the references. This dynamically
connects a page to the constructs of the Petri Net in
which it resides as a token. As long as a page marks
a port the connections to it remain.

Figure 7 is an example of a Port with two references
and two links. A place is connected to reference 0
and a transition is connected to link 4. If the page
of Figure 6 was to enter this port, then the place in
Figure 7 would become connected to the transition
in Figure 6.

Figure 7: A Port with four interface constructs

4 Simulation

The RealFusion development environment supports
all of the introduced language constructs. It inte-
grates a Petri Net modeler and interpreter with the
Open Inventor graphics library into one application.
The close integration of the different components sup-
ports interactive and iterative modelling.

The process of building a simulation starts with a
Scene Tree that resembles the appearance and struc-
ture of the system under development. Any general-
purpose 3D modeler capable of producing Open In-
ventor files is suitable to build a scene. It is important
that the tree closely resembles the structural depen-
dencies of the system. This ensures that the Petri Net
will be created in the proper context, and therefore
closely resembles the processes that are occurring in
the system.

Given an appropriate Scene Tree, the next step
is to identify objects by attaching pages to selected
nodes in the scene tree. For each page a process
model and interface is created. The model includes
the graph structure of the net, the annotation of
places, transitions and arcs with functions and ex-
pressions, and an initial marking of tokens.

4.1 Interface

The user interface consists of a tree view and display
window. The tree view shows the structure of the
scene tree and the display window toggles between
the rendered Scene Tree (Figure 8) and the Petri
Net (Figure 9). During interpretation, the display
window either shows the animated scene or the state
changes of the Petri Net. The Petri Net view shows

7



the enabling and disabling of arcs and occurrence of
transitions as they execute.

Figure 8: Graphic view for a manufactuing system

The Petri Net View shown in Figure 9 displays
the contents of a selected page. The page of this
example contains several ports that are marked with
the pages that model the different work cells of the
manufacturing system show in Figure 8.

Figure 9: Process view for a manufacturing system

Places and transitions have additional views to edit
their content. In particular, the views necessary to
select the engine types and their I/O mappings to the
fields of a scene tree node.

4.2 Interpreter

The semantics of the Petri Net formalism describes
the rules of how to interpret and execute the language
constructs. An interpreter implements these rules in
a procedural programming language and executes a
concurrent Petri Net on a sequential computer. The
interpreter maintains the graph structure of the net,
controls the occurrence of transitions, the marking of
places and the movement of tokens. Although each
page gives the impression of being a self contained
Petri Net, all of their transitions, places and arcs are
maintained in a flat net structure.

The timing of the Petri Net is linked to the frame
rate of the Scene Tree renderer. The interpreter and
renderer advance in lock step to avoid temporal an-
tialiasing, where changes to the scene happen faster
than the frame rate. Between rendering each frame,
the interpreter advances one time cycle. During that
cycle it allows transitions to occur and places to up-
date the functions they compute. Internally the inter-
preter maintains a priority queue of transitions that
are ready to occur, and a list of places that currently
compute any functions. To avoid deadlocks each
transition is only allowed once in the ready queue
during each time cycle.

5 Results

The first model produced with this formalism is
shown in Figure 8. It is a manufacturing facility
that contains robotic arms, conveyor belts and pack-
ing stations. The facility consists of four cells that
are responsible for coloring and packaging two dif-
ferent types of resources. Junctions connecting the
conveyor belts sort the resources according to their
state of manufacturing. The most notable results are
the ease with which to model the parallel control pro-
cesses that guide the activities in this system. The
Petri Net naturally computes concurrently and pro-
cesses synchronize automatically with the presence or
absence of tokens. Also, the entire process model is
symbolic and the structure of the Petri Net reflects
the physical layout of the system. Following are ini-
tial observations of how the individual language con-

8



structs apply to describe concurrent, sequential and
dynamic tasks.

5.1 Sequential tasks

A place can apply the same function to a set of dif-
ferent tokens sequentially. Because tokens enter the
place at different times they are at different stages or
time indexes of the function. An animation function
for such a place, for example, is the path of a conveyor
belt. The longer a tokens has been on the place, the
further along the path it will be. The queuing ca-
pacity determines the maximum number of elements
allowed on the conveyor belt. Arcs to and from the
place are enabled when there is room at the front of
the belt or, when a resource has reached the end.

5.2 Concurrent tasks

The different colors of a place can apply different
functions to a set a tokens concurrently. Objects that
move in synchronization reside next to one another
on the same place and they become part of the same
transition occurrences. By placing all of the move-
able parts of a robotic arm onto a place, for example,
it can position the arm be rotating all of the joints
at once. The animation functions in this case are the
different rotations about the joints.

5.3 Dynamic tasks

The port places represent a different context for a
machine or cell. The objects inside a page are still
changing state, or operating, while the page rests on a
port. The connections between the port and the page
influence the pages’ internal behavior and allow the
exchange of resources. Moving pages between ports
is similar to moving a machine from one context to
another. Depending on where it resides, different ac-
tivities can be activate and different resources manip-
ulated. An example of utilizing a port is in the case
of a flexible production system where a robotic arm
must pick up any one of a number of different tools.
Separate pages model the behavior of the tools and
that of the robotic arm. The page of the robotic arm,
however, contains a port place. Depending on what

tool it currently uses, a different token resides on the
port.

6 Related Work

Many vendors and research groups that develop sys-
tem design tools, are taking steps towards integrating
three-dimensional computer graphics. The tools and
vendors include, but are not limited to, the Simulink
environment from Mathworks, 20 Sim from Control-
lab, and Quest/Delmia from Deneb.

Simulink is a graphic modelling environment that
allows interactive assembly, simulation and analyzing
of complex system models. The building blocks are
predefined domain specific block diagrams. The lan-
guage builds on the MATLAB toolkit and provides
an extensive library of functionality. Recent addi-
tions to the language include virtual reality sinks and
sources that allow a model to communicate with the
MATLAB Virtual Reality Toolbox. The toolbox is
a distributed VRML-based virtual environment and
the sinks and sources trigger scripts that execute in-
side the virtual environment.

20 Sim [11] is a graphic modeling tool for hybrid
systems based on bond graphs. The tool allows in-
teractive development, simulation and analysis of a
system model. 20 Sim also allows the mapping of
process variables into a 3D scene.

Quest/Delmia from Deneb is touted the most ad-
vanced manufacturing simulation software available
today. Quest/Delmia produces a range of products to
support the life and development cycle of a manufac-
turing system, including three-dimensional visualiza-
tion. Deneb has taken an object-oriented approach
towards simulation where objects are defined using
GSL (Graphic Simulation Language) [12], a procedu-
ral programming language. The GSL language con-
structs are integrated with other aspects of the man-
ufacturing simulation such as production databases.

With respect to Petri Nets, integration into com-
puter graphics has been sparse so far. Although Petri
Nets have been used to model mechatronic systems
[1], the extent to which they incorporate computer
graphics is limited to animating the Petri Net itself,
or graphically plotting the variables inside the net.

9



However, there has been some research to explore
the use of Petri Nets for animation control [13]. The
author modelled the processes that control the artic-
ulation of human figures by using a Petri Net that
invokes human character animation sequences.

7 Conclusion

This work presents a new application area for Petri
Nets and also a novel technique to define and exe-
cute three-dimensional models of mechatronic man-
ufacturing systems. To the best knowledge of the
authors, Petri Nets have not yet been investigated in
the manner presented here. During the course of cre-
ating a development environment for this formalism,
new interpretation and user interface techniques with
respect to Petri Nets have also been developed.

The formalism presented here leverages the advan-
tages of a formal and symbolic modelling language
with that of three-dimensional computer graphics to
support the design of manufacturing systems. Most
notably, this formalism supports concurrency, is type
safe and has an intuitive user interface. Processes
models are created in the context of the physical
structure of the system, and they are therefore easy
to comprehend and maintain. In conjunction with
effective tool support, the design task becomes in-
teractive and facilitates an iterative and evolutionary
style of development. The language is also is based on
a proven technique, and incorporates the constructs
necessary to describe the hybrid nature of a manu-
facturing process.

8 Future Research

An important area of future research is to explore
more advanced animation functions and to incorpo-
rate sensing techniques such as collision and prox-
imity detection. The modelling language presented
here can be extended by incorporating new types of
tokens and animation functions. There are also tech-
niques to model sensors by deducing spatial informa-
tion from the Scene Tree. It remains to be determined
how to incorporate sensors with a Petri Net.

Hybrid Petri Nets are another important area of
research. They include special place and transi-
tion types that incorporate continuous variables other
than time. They are important to compute the multi-
variable differential equations that are often neces-
sary to model physical processes. Much research has
been conducted with respect to Hybrid Petri Nets,
and they are an important extension to the formal-
ism introduced here.

Simulation-based control is based on the concept of
developing and controlling a system using only simu-
lation software. The advantages to this approach are
that the design process directly produces the control
software without additional development steps. The
Petri Nets described here, at least partially, reflect
the logic necessary to control the system under devel-
opment. It remains to be investigated how to utilize
these models as control software.

References

[1] P. Antsaklis and X. Koutsoukos. Hybrid sys-
tems: Review and recent progress. Software En-
abled Control, IEEE Press, To appear 2002.

[2] M.D. Lemmon X.D. Koutsoukos, K.X. He and
P.J. Antsaklis. Timed petri nets in hybrid sys-
tems: Stability and supervisory control. Journal
of Discrete Event Dynamic Systems: Theory and
Applications, 8(2):137–173, 1998.

[3] C. A. Petri. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Advances in Petri Nets
1986, Part I, Petri Nets: Central Models and
Their Properties., volume 254 of Lecture Notes
in Computer Science, pages 4–24. Springer-
Verlag, 1987.

[4] E. Schnieder M. Chouikha. Modelling of
continuous-discrete systems with hybrid petri
nets. Proc. of CESA’98: Computational En-
gineering in Systems Application, 3:606–12, 4
1998.

[5] R. Parent. Computer Animation, Algorithms
and Techniques. Morgan Kaufmann, 2001.

10



[6] C. A. Lakos. The object orientation of object
petri nets. In Workshop on Object Oriented Pro-
gramming and Models of Concurrency, 1995.

[7] W. M. Zuberek and I. Bluemke. Hierarchies of
place/transitions refinements in petri nets. Con-
ference on Emerging on Technologies and Fac-
tory Automation, pages 355–360, 1996.

[8] J. W. Janneck and R. Esser. Higher-order
petri net modeling—techniques and applica-
tions. Workshop on Software Engineering and
Formal Methods, 2002.

[9] C. A. Lakos and S. Christensen. A general sys-
tematic approach to arc extensions for coloured
petri nets. Application and Theory of Petri Nets,
pages 338–357, 1994.

[10] K. Jensen. Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Springer
Verlag, 1997.

[11] J. van Amerongen. Modelling, simulation and
controller design for mechatronic systems with
20-sim 3.0. 1st IFAC conference on Mechatronic
Systems, 9 2000.

[12] P. M. Griffin L. F. McGinnis D. A. Bodner,
M. Damrau and A. McLaughlin. Virtual proto-
typing of electronic assembly systems. Proceed-
ings of the 1998 Industrial Engineering Research
Conference, 1998.

[13] A. Raposo A. de Lima Bicho and L. P. Mag-
alhes. Control of articulated figure animation
using petri nets. XIV Brazilian Symposium on
Computer Graphics and Image Processing, 2001.

11




