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Abstract 
This paper discusses optimum synthesis of mechanisms. In general mechanism 
synthesis, a linkage is designed for function generation, motion generation, or 
path generation. Function generation correlates the input and output link motions. 
A dwell mechanism output link remains stationary for some specified input 
motion range. This paper presents a method for designing dwell mechanisms 
using Differential Evolution. Differential Evolution is an evolutionary 
optimization scheme, enabling finding the global optimum of a design problem. 
The method uses two penalty functions: one for constraint violation, and one for 
relative accuracy. The developed methodology is applied to the synthesis of six-
bar linkages for dwell and dual-dwell mechanisms. The six-bar mechanism is 
synthesized using two different approaches: four-bar extension to six-bar, and 
direct six-bar. The paper concludes with results demonstrating the successful 
application of the method and the two approaches. 
 
Optimisation du Mécanisme Statique à Six-Barres Stephenson 

en Utilisant l'évolution Différentielle 
Résumé 

Cet article présente la synthèse optimum des mécanismes. Généralement dans la 
synthèse de mécanismes, un lien est conçu pour la génération de fonctions, la 
génération de mouvements, ou la génération de chemins. La génération de 
fonctions corrèle les liens d’entrée et de sortie des mouvements. Le lien de sortie 
d’un mécanisme statique reste stationnaire pour une gamme spécifique de 
mouvements d’entrée. Cet article présente une méthode pour concevoir des 
mécanismes statique en utilisant l' Évolution Différentielle. L'Évolution 
Différentielle est un arrangement évolutionnaire d'optimisation, permettant de 
trouver la solution globale optimum pour un problème de conception. La 
méthode emploie deux fonctions de pénalité - une pour la violation de contraintes 
et une pour l'exactitude relative. La méthodologie développée est appliquée à la 
synthèse des liens à six barres pour des mécanismes statique et dual-statique.  Le 
mécanisme à six-barres est synthétisé en utilisant deux approches différentes: la 
prolongation de quatre-barres à la six-barres, et l’utilisation de six-barres 
directement. L’article conclut avec des résultats démontrant la réussite de 
l'application de la méthode et des deux approches. 
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1 Introduction 
Mechanism synthesis using computer optimization has been an active research area 

during the last 30 years. The most common mechanism studied is the four-bar linkage.  In 
general, mechanism synthesis includes motion, function, and path generation. Both 
graphical and numerical techniques with and without prescribed timing are well studied 
[1]. The graphical techniques are limited to a small finite number of precision points and 
the solution accuracy is limited. Numerical techniques are commonly combined with 
various optimization schemes such as genetic algorithms [2, 3, 4], evolutionary 
techniques [5], interior-point method [6], and Gauss constrained method [7]. 

Limitations imposed on size, shape and force transmission ability at times require 
mechanisms that could meet complex design tasks [8]. The synthesis of six-bar linkages 
offers an alternative to cams to attain certain special requirements that are usually not 
satisfied by a four-bar mechanism. One such application is the use of a six-bar 
mechanism when there is a requirement to produce a dwell in the output link during 
predefined motion periods of the input link. 

This paper will only study a six-bar linkage, comprised exclusively of binary links 
and revolute joints. A similar procedure developed for linkages with a slider joint exists, 
but will not be presented here. A dwell occurs in the output link when the output link 
remains stationary for non-zero input link motion. Cams are often used in generating 
dwells, but cams generally are expensive to manufacture, whereas the six-bar linkages 
can produce the dwell with relatively low cost and wear [9]. Thus, six-bar linkages are 
sometimes a viable alternative even considering the difficulties associated with its 
synthesis [9]. In the optimum synthesis of dwell mechanisms, the optimization problem is 
formulated as a minimization of the error in correlated input and output angles. 

Numerous optimization methods applied to mechanism synthesis are found in the 
literature with somewhat dated surveys presented in [10, 11]. More modern approaches, 
including the use of evolutionary computation, linear and non-linear programming, and 
other techniques are found in [2- 5, 12-14, 16-24, 34, 35]. Four-bar mechanism synthesis 
is broadly reviewed in [4, 5]. A detailed review of mechanism optimization literature will 
not be presented herein. Because of its ease of use in scientific computing, MATLAB 
was used in all this research. 

Based on four-bar, slider-crank, and inverted slider-crank, there are 21 six-bar 
configurations, which may be synthesized. This paper studies the six-bar based on the 
basic four-bar linkage, having R-R dyads exclusively (known as Stephenson’s inversion 
III). This mechanism can generate dwells in the output linkage if there are circular arcs in 
the coupler curve of the primary four-bar linkage. The proposed method requires the user 
to prescribe the precision points on the coupler curve including the precision points 
located on circular arcs, which will be used to produce the dwells in the output link of the 
six-bar, the relationship between crank-angle to output-angle for the precision points on 
arcs, and the minimum allowable value of the transmission angle. The successive 
optimization methodology is applied to the synthesis of six-bar dwell mechanisms using 
two different approaches. First, a two-staged synthesis is used in the synthesis of a four-
bar linkage and then the synthesis of remaining dyad of six-bar. Here, we consider the 
accuracy at each precision point on the coupler curve and the input-output angle 



correlation for circular arc regions. In the second method, the synthesis of the six-bar is 
performed directly, considering accuracy at precision points on the whole coupler curve 
and the input-output angle correlation for circular arc regions.  

A recently developed evolutionary-based optimization technique was used in the 
optimization, referred to as Differential Evolution (DE). The method has been 
successfully applied to many diverse domains [25, 26]. The authors have previously used 
a DE-based optimization techniques for optimum robot design considering kinematic, 
dynamic, and structural constraints, and for optimum synthesis of four-bar mechanisms 
[5, 27]. Herein, we investigate the application of DE to the synthesis of six-bar 
mechanisms. The initial bounds for the design variables are defined based on the 
Geometric Centroid of the Precision Positions (GCPP) previously developed in [5]. In the 
presented technique iterations, the initial accuracy to be met at each precision position 
and the accuracy at the output angle are obtained. The results of the current stage are then 
used as initial guesses for subsequent levels of optimization in an attempt to improve the 
accuracy of the synthesized mechanism. 

2 Optimization Problem Definition and Tools 
A general optimization problem is defined as follows [28] 

 
0)( ≤xg to subject
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where, f(x)  is the cost function, )(xgi  is the set of inequality constraints and n|Rx ∈  is 
the real-valued design variable vector with n  being the number of design variables. In 
DE terminology, the objective function is called the Cost-function. Figure 1 shows a 
schematic of the six-bar mechanism and the design variable used. Although it is possible 
to optimize mechanisms without these inequality constraints [34], and thus reduce 
computation time, the efficiency of the DE algorithm has been found by the authors' tests 
to be much faster than genetic algorithms with elitism, and thus, the computation times 
are relatively small. In fact, the authors' tests have shown the DE algorithm to often be 30 
times faster than a conventional GA. Other tests have shown DE to be more accurate than 
GAs. The authors' experience has been that most computations are found in just a few 
minutes. However, the general technique describe herein could be improved using the 
techniques given in [34]. 

The cost function f(x)  for mechanism synthesis for path generation is expressed as an 
error quantity that defines the deviation of each evaluated coupler point ),( yxcP  from 
the corresponding specified precision position. The cost function for the synthesis of 
dwell mechanism also includes the correlation between the input and output angles. The 
cost function employed here consists of the deviation of the precision points of the 
coupler curve and the deviation of the output angles from their respective desired values. 
These deviations are captured in the error function E. The error function directs the 
optimization search in regions of possible solutions. In addition, two different penalty 
functions are incorporated for the violation of imposed constrains. The cost function is 
found in two steps: first the error calculation, and second, the penalty for constraint 
violation. Note that only the precision points located on the circular arcs of the coupler 



curve are considered for input-output angle correlation because these points are used to 
generate the dwells. 

Figure1: Six-bar Mechanism Diagram and Design Variable Definition 

 

To summarize, the objective is to synthesize a mechanism that will pass through the 
precision points, while meeting the coordinated requirement between input and output 
angles in the portion of dwell with the desired accuracy level. Therefore, the error 
function is the sum of the square of the error at each precision point and square of the 
error at output angle. The precision points error is  
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where, pn  is the number of specified points, ),( didi yx  and ),( gigi yx  are the coordinates 
of the desired and generated (actual) points. Error for the circular arc (dwell) is  
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where, pdn  is the number of specified points on a dwell period, dσ  is the desired output 

angle, and gσ  is the generated output angle. 

In mechanism synthesis, an often imposed constraint is the satisfaction of the 
Grashoff criterion [1]. Depending upon the optimization method and application 
requirements, inequality constraints on the design variables are also defined, such as 
limits on the range of transmission angles, or limits on the mechanism link lengths. In 
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this work, three constraint sets are imposed. These constraints could be easily replaced to 
address other requirements or Grashoff type kinematic inversions. 

First, we consider positive magnitude constraints. All evolutionary based 
optimization techniques require the user to define bounds for the design variables. A 
property of DE allows the search to extend beyond these initial bounds. However, the 
user must carefully define constraints such that the physical characteristics of the problem 
and design variables are preserved. The positive magnitude constraints ensure that the 
link lengths of the linkages are positive. 
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Second, we consider the Grashoff criterion specifying a crank-rocker. This Grashoff 
criterion states that the designed mechanism must have at least one crank with complete 
rotation. This constraint enables the mechanism to be driven continuously, say by an 
electrical motor in a manufacturing situation where continuous motion is required in an 
inexpensive form. In four-bar mechanisms, the crank-rocker type linkage takes form 
when the input link has the smallest length and operates as a crank, while the output link 
just oscillates [1]. The Grashoff constraints for crank-rocker type four-bar mechanism 
are, 

 0)()(9 <+−+= qpslg  

 02110 <−= xxg ; 03111 <−= xxg   (5) 
 04112 <−= xxg  

where, l  and s  identify the longest and the shortest links. It is important to note that 
these constraints could be easily changed to address other requirements and this Grashoff 
criterion is only imposed to guarantee continuous motion of the crank. 

Third, we consider the violation of transmission angle constraint. The condition of 
transmission angle is verified at each precision point. The goal is to keep the minimum 
transmission angle of the mechanism larger than the desired value when the mechanism 
passes through the precision points. The transmission angle is defined as an acute angle 
between the coupler and output links [1, 15]. Whenever the coupler and the output links 
of the mechanism are aligned, the mechanism losses its mobility [1]. A small 
transmission angle is deemed inadequate to transmit desired forces to the output link. The 
desired value of transmission angle depends upon the specific application [1]. In order to 
prevent the loss of mobility condition, the transmission angle constraint imposed is,  
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where sdfd ττ  and   are the desired transmission angles of four-bar and six-bar 
mechanisms respectively, and sofo ττ  and   are the obtained transmission angles of four-
bar and six-bar mechanisms respectively. 



Forth, we consider the accuracy constraint. The accuracy constraint is applied at each 
precision point. It compares the distance between the desired and the generated precision 
points with a desired accuracy. 
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The accuracy level is also applied to the output angle  

 0<−= ag ik σ  (8) 

where iσ  is the difference between the desired and generated output angles at the  
precision point located on the dwell and pdni ,.....2,1= , npdnnpk p +++= 15,.....15 . 

Two differently weighted penalty functions penalizing the violation of constraints and 
the relative accuracy of the generated coupler point are implemented. The first three 
constraint sets are required for the valid assembly of a continuous motion crank-rocker 
four-bar mechanism with satisfactory transmission angles for each precision point. 
Therefore, any violation is heavily penalized, regardless of the magnitude of the 
violation. This penalty is referred to as a dominating penalty. The cumulative dominating 
penalty for the violations in these constraint sets is calculated according to 
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where, z  is a large positive number. 

The violation of an accuracy constraint is penalized considering the magnitude 
(measure or severity) of violation. The implemented strategy calculates the percentage of 
the violation with respect to the desired accuracy. Thus, the cumulative accuracy penalty 
is evaluated according to  
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In summary, the mathematical formulation of the optimization problem as applied to 
this work is as follows: 



Minimize,  
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where, dat PPP += , and  s  denotes a scaling factor selected in such a way that the 
search is always directed towards decreasing error. This is achieved by weighing E more 
than aP  such that aPs >> . 

The problem definition begins by defining the desired set of precision points, desired 
accuracy, precision points located on the dwell portion of coupler curve, and the 
minimum allowable value of transmission angle. We begin the problem by specifying the 
set of precision points, indicate which precision points define sections of the coupler 
curve used in dwell, the required accuracy, and the minimum transmission angle. The 
defined values are used in the analysis routines to define the initial bounds and values for 
the design variables. The design variables are checked for constraint violations, and then 
the cost function is calculated. The optimization routine uses this information to generate 
a new set of values for the design variables. One function evaluation is completed when 
one set of design variables is analyzed. The calculated error provides a cost evaluation for 
optimization. The cost is evaluated as given in equation (11). This process is repeated 
until certain criteria are met, such as meeting the desired accuracy or a predefined 
number of generations. Figure 2 shows a flowchart of the optimization process. 

The approach developed in this study requires the user to specify all the desired 
precision points on the coupler curve, the precision points located on the circular arc 
regions, and the corresponding crank angles to guarantee that the precision points are 
visited in the correct order. The crank angles for the precision points are calculated 
according to, 

 pici nixx ...3,2,1             7 =+= δ  (12) 

The optimum topology of a four-bar linkage is synthesized with ten real valued 
design variables. The design variables 4321 ,,, xxxx , and 5x  represent the magnitudes of 
their relative vectors, 7x  and 8x  are the crank and ground link angles, and 6x  is the angle 
between the vectors  2x  and 5x . The coordinates of the first ground point are relative to 
the origin where those for the second ground point are calculated relative to 1O  

 { }yx OxxOxxyxO 1841842 )sin(,)cos((),( ++=  (13) 
The coordinates of the third ground pivot point are calculated relative to 1O   
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The coordinates of a generated precision point for a four-bar mechanism are 
calculated using  
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The mathematical relationships for mechanism synthesis used in this work are the 
standard mechanism analysis and synthesis algorithms [1, 29, 30]. 

Figure 2: Analysis flowchart 

 

3 DE and Geometric Centroid of Precision Positions 
This section presents a short introduction to the general operation of DE. The 

interested reader is referred to the literature for a detailed description of DE [26, 31, 32, 
33]. DE uses the floating-point representations of design variables, which accelerates the 
manipulation of data. This property also makes DE independent of defined values of 
precision, and improves the resolution [31]. The DE approach contains the same 
processes of population initialization, mutation, crossover, and selection like Genetic 
Algorithms (GA), and emphasizes direct use of the objective function. In DE, unlike 
traditional GA, the genetic operation of mutation uses the vector differentiation method 
(adding the weighted difference between two population vectors to a third vector) to 
generate a new vector. In our work, we used the control parameters suggested by Storn 
[33], a crossover probability of 0.9 and weighting factor of 0.4. The population size is 
generally set at ten times the number of design variables, but increasing the population 
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size could be beneficial in some cases [33]. The number of generations for each case is 
selected based on desired convergence characteristics. 

Evolutionary-based approaches require the initial definition of bounds for each design 
variable to commence the optimization, in the same manner that classical optimization 
techniques require initial guesses for each design variable. However, there is no 
guarantee that a solution would exist in the initial range of design variables or that a 
solution will be reached starting from the initial guess. Thus, the quality of the final result 
greatly depends upon the definition of the initial guess or design variable bounds [31]. 
One of the most promising features of DE is its capability to extend the search space 
beyond the specified initial bounds. However, the user must still provide reasonable 
initial bounds based on the physical characteristics of the problem analyzed.  

The GCPP approach as described in [5] is used to automatically define the initial 
bounds of the design variables for Level 1 based on the geometric definition of the 
desired precision points. The results obtained in Level 1 are used to decide design 
variables bounds of Level 2 and those obtained in Level 2 are used for Level 3. The upper 
and lower bounds of the design variables for Level 2 and Level 3 are obtained according 
to, 

 X%)( D D ij i,j ±=+ 11  (16) 
In addition, to the definition of the “new” bounds, the population and generation 

numbers are also increased. In this work, 20=X  was used. The desired accuracy at each 
subsequent level is defined such that 123 aaa << , where 2a  is the accuracy at Level 2, 
and 3a  is the accuracy at Level 3. 

4 Six-bar Mechanism Synthesis Results 
The presented methodology is applied to the synthesis of a six-bar mechanism 

capable of generating dwells with prescribe timing relative to the motion of the input link 
(crank). A coupler curve consisting of 18-precision points with two circular arcs is used 
for the synthesis of the six-bar mechanism. The precision points on the circular arcs (the 
ones producing the dwells) are to be traced in correlation with the input crank angles. The 
input data of the coupler curve is shown in Table 1. Note that precision points 1, 2, 9, 10, 
11, and 18 are located on the dwell-producing circular arcs. 

The precision points on the circular arcs that produce the dwells are to be traced in 
correlation to the input crank angles. Dwells of o40  and o30  at the output link are 
required when the crank rotates from o160  to o200  and from o15−  to o15 . The pictorial 
representation of the dwell relationship is shown in Figure 3. When the coupler point of 
the mechanism passes through the dwell portion of the coupler curve, the corresponding 
position of the output-link should be within the prescribed accuracy constraints. The 
change of angle at the output link is 15o. As discussed in [30], the symmetry of this 
problem enables simplification of the optimization process. However, for general 
mechanism design, this is not always the case. Because the authors wish to use this same 
technique on a variety of mechanisms from 4- to n-bar, this characteristic of the 
symmetry was ignored. 



The test cases considered for the synthesis of six-bar mechanisms use DE as the 
optimization tool and GCPP for initial definition of the limits on the design variables. 
The successive optimization will be introduced and discussed, and the results for each 
case will be presented and compared. 

Table 1: Input Data for Tests A & B 
Precision Position x- coordinate  y-coordinate Crank Angle 

1 -0.5424 2.3708 0 
2 0.2202 2.9871 15 
3 0.9761 3.4633 40 
4 1.0618 3.6380 60 
5 0.8835 3.7226 80 
6 0.5629 3.7156 100 
7 0.1744 3.6128 120 
8 -0.2338 3.4206 140 
9 -0.6315 3.1536 160 

10 -1.0000 2.8284 180 
11 -1.3251 2.4600 200 
12 -1.5922 2.0622 220 
13 -1.7844 1.6539 240 
14 -1.8872 1.2654 260 
15 -1.8942 0.9448 280 
16 -1.8096 0.7665 300 
17 -1.6349 0.8522 320 
18 -1.1587 1.6081 345 

Figure 3: Coupler curve and Dwells Pictorial Representation 

Test A. The optimization process is performed in two stages: stage one considers the 
synthesis of a four-bar mechanism, and the second stage extends the four-bar to a six-bar. 
The set of the 18-precision points along with the respective crank angles are shown in 
Table 1. All the precision points were considered during the optimization process. The 
results of the optimization for each stage are given in Table 2. The synthesized 
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mechanism and coupler curves generated during the optimization process are shown in 
Figure 4.  

Table 2: Stage 1 Results for Four-bar Synthesis 
 Pop No Iterations Evals Total Error Acc 

Level 1 150 113 17100 0.0540 0.100 
Level 2 170 30 5270 0.0204 0.050 
Level 3 200 98 19800 7.69e-004 0.010 
Level 4 250 36 9250 1.94e-004 0.005 

 

Test B. The optimization process was performed in one stage considering the direct 
synthesis of a six-bar mechanism without first synthesizing a four-bar mechanism. The 
set of the 18-precision points along with the respective crank angles are shown in Table 
1. All the precision points were considered during the optimization process. The results 
of the optimization are given in Table 3. The synthesized mechanism and coupler curves 
generated during the optimization process are shown in Figure 5. 

5 Conclusions 
In this manuscript, we presented the synthesis of six-bar mechanisms for specified 

dwell. In this work, a recently developed evolutionary algorithm called Differential 
Evolution (DE) was used along with a novel technique for defining the initial bounds of 
the design variables called Geometric Centroid of Precision Points (GCPP). Combination 
of these two components enables using the unique features of DE to enable the automatic 
search beyond the initially defined design variable bounds in an effort to reach a global 
optimum. Successive optimizations enabled accuracy improvement. Two penalty 
functions were employed: one that emphasizes the deviation from the precision points 
and penalizes based on the magnitude of the deviation, and the second one that penalizes 
any constraint violation irrespective of the magnitude of violation. The developed 
methodology was successfully applied to the synthesis of six-bar mechanisms 
considering two different approaches for the synthesis. The results presented verify the 
validity of the developed methodology. 
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Table 3: Direct Synthesis of Six-bar Mechanism 
 Pop No Iterations Funct Evals Total Error Accuracy 

Level 1 150 99 15000 0.0526 0.100 
Level 2 170 53 9180 0.0203 0.050 
Level 3 200 225 45225 0.0011 0.010 
Level 4 250 95 24000 2.71e-004 0.005 

 



 
Figure 4: Six-Bar Mechanism Iteration History Using Two Stage Synthesis 

 

 
Figure 5: Six-Bar Mechanism Iteration History Using Direct Synthesis 
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