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Abstract 

In this study, the effect of active joint jam and actuator force loss on the mobility, velocity and 

static force of parallel manipulators is investigated. The Grübler’s mobility equation is modified 

to take into account the motion space of the manipulator branches. To predict the post-failure 

performance of parallel manipulators, the effect of joint jam and actuator force loss on the 

velocity and on the force of parallel manipulators is investigated by examining the change in the 

Jacobian matrix, its inverse and transposes. The methodology is implemented in a simulation of a 

3-3 6-degree-of-freedom (6-DOF) Stewart-Gough manipulator in various configurations, and 

reduced velocity and force performance is investigated. 

1. Introduction 

1.1 Parallel Manipulators 

Robots are programmable machines that can be programmed according to their task 

requirements. Parallel robots, unlike serial robots, have closed-chain mechanisms, in which a 

number of serial branches (also called limbs or legs) act in parallel on a mobile platform, as 

shown in Figure 1. Generally speaking, parallel manipulators have higher stiffness and motion 

accuracy than serial manipulators due to the in-parallel application of the branches on the mobile 

platform.  
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1.2 Failure of Parallel Robots 

Robot failure is the inability of the robot to perform its required function. Failure of parallel 

robots could originate from various components such as links, passive joints, active joints and 

end-effector. In active joints, there are several components that are susceptible to failure, such as 

actuator devices, transmission systems, sensors and controllers. Potential failure modes of active 

joints, are joint jam, actuator run-away, degradation in actuator force and complete loss of 

actuator force. All the above failure modes may render the parallel manipulator incapable of 

completing its tasks.  

A fault tolerant robot is capable of completing its task with the presence of failure. Fault 

tolerance could be achieved by compensating the function of the failed hardware component by 

the function of a redundant component that is initially incorporated in the design. Robot 

manipulators with redundant components are called redundant manipulators. 

 

 

Figure 1: A 6-DOF parallel robot (F-200i) from FANUC Robotics Inc. 
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1.3 Previous Works 

Failure and its effect on the performance of serial robots have been studied by many researchers; 

a list of some relevant work is included in Visinsky et al. (1994). Roberts and Maciejewski 

(1996) studied the effect of locked joint failure on manipulability index of redundant serial 

manipulators. The change in the manipulability value due to locked joint failure at a certain 

configuration, was used as a local fault tolerance measure that indicated how close the serial 

manipulator came to singularity when one or more of its joints were locked in a specific 

configuration. 

Bergerman and Xu (1997) studied the effect of locking a free-swinging joint, whose torque 

generation capability was completely lost, on the workspace and manipulability of a planar 

redundant serial manipulator. English and Maciejewski (1998) studied free-swinging joint failure 

in serial manipulators and defined three measures (torque, acceleration and swing-angle) that 

quantitatively reflect the susceptibility of the serial manipulators to the occurrence of free-

swinging failure and to its potential post-failure damage. It was suggested that minimizing these 

measures would minimize the likelihood of the occurrence of free-swinging failure and its post-

failure consequences. Roberts (2001) studied the effect of locking and unlocking of single and 

multiple free-swinging failed joints on static and dynamic manipulability of redundant serial 

robots. 

For parallel manipulators, however, research on failure analysis and fault tolerance has not been 

sufficiently explored. Notash and Huang (2003) used the Failure Mode and Effect Analysis to 

study the failure modes of parallel manipulators with their effects on the degree of freedom 

(DOF), actuation and constraint in parallel manipulators. Redundancy types, such as redundant 

DOF, redundant actuation, redundant branch and redundant sensing, were suggested for fault 
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tolerant design. Several actuation redundancy configurations of parallel robots with various 

degrees of mobility were listed, showing the distribution of redundant actuators on the branches. 

The effects of various failure modes and the required redundancy to cope with these failure 

modes were suggested. 

Ting et al. (1995) presented two fault tolerance methods for post-failure recovery against full or 

partial loss of actuator torque in parallel robots. The first method was based on utilizing actuation 

redundancy in which the amount of lost torque was compensated by the redundant actuators. In 

this case, the torque was re-distributed on other actuators. The second method was based on 

changing the task time, which effectively changed the inertial forces, to decrease the overall 

actuator torque demands.  

1.4 Contribution and Organization of this Work 

This study is aimed at analyzing the effect of active joint failure on mobility, velocity and force 

of parallel manipulators. An analytical procedure to determine the mobility, velocity and force 

capability of parallel manipulators after failure is explored. The procedure could be useful to 

predict, in cases where maintenance is not immediately available, whether or not the manipulator 

could perform the task or part of the task successfully with the existence of failure. 

A modified mobility equation is presented which addresses the effect of the type of joints on 

mobility of parallel manipulators, followed by an illustration of the effect of active joint jam and 

actuator force loss on mobility. A brief background on velocity and static force analyses in 

parallel manipulators is given. The effect of active joint failures, such as joint jam and actuator 

force loss on velocity and static force is analyzed. The analysis procedure is applied on an 

example spatial parallel manipulator. 
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2. Analysis of Active Joint Failure in Parallel Manipulators 

In this section, the effect of active joints failure on the mobility, velocity and force of the 

manipulator is investigated. Two catastrophic failures are considered: joint jam and actuator 

force loss. 

 Joint jam is the case when a joint loses its DOF and, as a result, its velocity becomes zero. This 

failure could occur due to bearing jam, actuator brake failure to release, actuator breakdown in a 

non back-drivable joint, and so on. Also, the joint may be locked by the operator.  

Actuator force loss is the case when the actuator loses its entire force generation capability and 

as a result, the joint becomes a passive joint if the joint driving system is back−drivable. 

However, if the joint driving system is not back−drivable, it jams. A parallel manipulator could 

also lose actuator force if the branch of that actuator is broken off the manipulator, in which case 

the manipulator loses an active branch. 

2.1 Effect of Active Joint Failure on Manipulator Mobility 

2.1.1 Modifying Grübler’s Mobility Equation  

The mobility of parallel manipulators could generally be calculated from Grübler’s equation, 

written as: 

∑
=

+−−=
n

j
jfnlM

1

)1(λ
 

(1) 

where M is the mobility (DOF) of the manipulator; l is the total number of links in the 

manipulator, including the fixed (base) link; n is the total number of all single and multiple-DOF 

joints in the manipulator; fj is the DOF of the jth joint; λ is the DOF of the space in which the 

manipulator is intended to function and is equal to 3 for planar or spherical manipulators and 6 

for spatial manipulators.  
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Although equation (1) is sufficient for a preliminary analysis, it provides only the minimum 

possible mobility for a particular manipulator, Malik and Kerr (1992), as the equation does not 

take into account the geometrical relations between the joints. Also, equation (1) does not give 

the correct mobility for manipulators where the motion space DOF, λ, varies due to constraints 

imposed by the kinematic structure or geometry, Liu and Yu (1995) and Zhang (2000). For 

example, the mobility of the planar manipulator in Figure 2 is 1, if λ=3 is used in equation (1). 

However, because λ is not the same for all the links, the actual observed mobility is 2. The joints 

of the branch containing links 2 and 3 are revolute joints that provide motion in three directions, 

i.e., two translations in the plane of the manipulator and one rotation about an axis normal to the 

plane. Therefore, the DOF of the motion space for the branch containing links 2 and 3 is 3. On 

the other hand, the joints of the two branches containing links 5 and 6 are prismatic joints that 

provide motion in two translations on the plane, and, therefore, the DOF of the motion space of 

each one of these two branches is 2.  

 

Figure 2: A six-link 2-DOF planar manipulator 
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To calculate the mobility for manipulators like the one in Figure 2 and to understand the effect of 

losing branches from, or adding branches to the parallel manipulator, equation (1) has been 

modified as shown in the following procedure. 

The mobility of manipulators could be written as: 

( ) ( )∑∑∑
= ==

−−+=
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n

j
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ii
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where L is the number of branches (or limbs) of the manipulator; li is the number of links in the 

ith branch, not including the base link and the mobile platform; iλ  is the DOF of the motion 

space provided by the joints of the ith branch; pλ  is the DOF of the motion space of mobile 

platform; ni is the number of joints in the ith branch; and fij is the DOF of the jth joint in the ith 

branch. 

The term ( ) p

L

i
ii l λλ +∑

=1

 is the sum of the DOF of the spaces of all links. It should be noted that 

the DOF of the space for the fixed base link is 0, and therefore, was not included in equation (2). 

The term ( )∑∑
= =

−
L
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λ  is the sum of the constraints imposed by all joints in the manipulator. 

The value of iλ  can be identified from the kinematic structure of the links and geometry of each 

branch. For example, if the ith branch in a planar manipulator has prismatic joints only (two or 

more joints), then iλ =2 because, in this case, the branch would allow the mobile platform to 

have only two translations in the plane and would not allow for any rotation. If, on the other 

hand, the ith branch in the planar manipulator has revolute joints, then iλ =3 because, in this 

case, the branch would allow the mobile platform to have two translations on the plane of motion 

and a rotation about an axis perpendicular to the plane. Moreover, if the ith branch has revolute 
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or spherical joints that allow for the mobile platform to move out of the plane, then iλ =6. 

Moreover, because the mobile platform is moved and constrained by the branches, the DOF of 

the motion space of the mobile platform, pλ , has to be equal to the DOF of the smallest branch 

motion space, provided that this motion space is not outside the motion space of the other 

branches. Rearranging equation (2) results in 
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Equation (4) could be written as: 

( ) p

L

i
iifM λλ +−= ∑

=1  
 (5) 

Using equation (5), one could find the correct mobility of parallel manipulators where the DOF 

of the branch motion spaces are not the same, such as the manipulator shown in Figure 2. If the 

DOF of the branch motion spaces are the same, equation (5) could be written as: 

( ) λλ +−= ∑
=

LfM
L

i
i

1

 (6) 

Equation (6) is the same as presented by Malik and Kerr (1992). 

2.1.2 Effect of Joint Jam on Manipulator Mobility 

Jamming of a specific joint could change pi λλ and depending on the type of the jammed joint. 

For example, if the ith branch has one revolute and two prismatic joints, then if a revolute joint is 

jammed, the value of iλ  will be changed from 3 to 2. However, in cases where pi λλ and do not 
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change due to joint jam, one could easily notice, from equation (5), that the jam of a single-DOF 

jth joint in ith branch (i.e., when 0becomesijf ) decreases the mobility by 1. 

2.1.3 Effect of Actuator Force Loss on Manipulator Mobility 

The loss of the actuator force does not change the mobility of the manipulator because all the 

terms in equation (5) remain unchanged. However, if the actuator force loss is due to active 

branch loss, then the mobility changes. From equation (5), if pλ  does not change after branch 

loss, then one could easily notice that losing the ith branch changes the mobility by ( )iif λ− . 

Therefore, the mobility of the manipulator decreases if ( ) 0>− iif λ and, on the other hand, the 

mobility of the manipulator increases if ( ) 0<− iif λ . The mobility of the manipulator remains 

unchanged if ( ) 0=− iif λ . 

2.2 Effect of Active Joint Failure on Manipulator Velocity  

2.2.1 Theoretical Background 

The theoretical background presented in this sub-section is based on the work of Kumar and 

Gardner (1990). 

For parallel manipulators consisting of a number of serial branches, the velocity equation for the 

ith serial branch is expressed in the following equation: 

qx && iii J=
    

)1,2,...for (and,,: LiRJRR ii nminimi =∈∈∈ ×qx &&  (7) 

where x&i  is the vector composed of the components of the linear and/or angular velocity of the 

end-effector; q&i  is the vector composed of velocities of the joints of the ith serial branch; m is 

the dimension of the end-effector motion space, which is assumed to be equal to the dimension 

of the task space; ni is the number of the joints of the ith branch and iJ is the Jacobian matrix that 

maps q&i to x&i .  
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In this study, it will be assumed that m = λ = (DOF of the task), which is true for 3−DOF planar 

and 6−DOF spatial manipulators. Therefore, m=ni (for i=1,.., L) and if the manipulator is in non-

singular configuration (iJ is of full rank), then the velocity of the joints of the ith branch can be 

calculated from equation (8): 

xq && 1−= Jii     
 

xx && i=:        )1,2,...,( Li =  (8) 

where x&  is the vector composed of the components of the linear and/or angular velocity of the 

end-effector.  

Equation (8) can be written for all the branches in the following compact form: 
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Reordering the velocities of the joints and their corresponding rows in equation (9), and 

regrouping the velocities of the active joints and passive joints, separately, results in 

xq && 1−= aa J        
mn

a
n

a
m aa RJRR ×− ∈∈∈ 1and,,: qx &&  (10) 

xq && 1−= pp J        
mn

p
n

p
m pp RJRR ×− ∈∈∈ 1and,,: qx &&  (11) 

where aq& and pq& are the vectors composed of velocities of the active and passive joints in the 

manipulator, respectively; na and np are the number of active and passive joints in the 

manipulator, respectively; 1−
aJ  is the inverse Jacobian matrix that maps x&  to aq&  and 1−

pJ  is the 

inverse Jacobian matrix that maps x&  to pq& . 

If m=na and the manipulator is in non-singular configuration ( 1−
aJ  is of full rank), then the end-

effector velocity can be determined from the following equation:   
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aaJ qx && =     aa nm
a

n
a

m RJRR ×∈∈∈ and,,: qx &&  (12) 

In equation (12), there is a unique solution of mR∈x&  for every an
a R∈q& . In other words, the end-

effector can have any velocity in the task space by controlling the velocities of the active joints. 

Substituting equation (12) in (11), the relationship between the velocities of the active joints and 

the velocities of the passive joints could be expressed in the following equation: 

a
p

ap G qq && =    :   ap
p

a JJG 1−=    )( ap nnp
a RG ×∈  (13) 

2.2.2 Effect of Joint Jam on Manipulator Velocity 

When a single−DOF active joint jams in any branch, equation (12) becomes: 

aaJ qx && =       )1(1 and,,)(: −×− ∈∈∈ aa nm
a

n
aa RJRJcsp qx &&  (14) 

where )( aJcsp is the column space of the matrix aJ .  

In this sub-section, the Jacobian matrix aJ  and the velocity vector aq&  will denote the reduced 

Jacobian matrix and velocity vector, respectively, after active joint jam. In equation (14), the 

column of the Jacobian matrix corresponding to the jammed active joint is eliminated, resulting 

in reduction of the rank of aJ  by 1. Thus, after failure, the dimension of the column space, na−1, 

becomes smaller than the dimension of the desired task space, m. Equation (14) is consistent (has 

a solution of 1−∈ an
a Rq& ) only for )( aJcsp∈x& , and there is no solution of 1−∈ an

a Rq&  if 

)( aJcsp∉x& . In other words, when an active joint jams in a non-redundant parallel manipulator, 

the dimension of the space, in which the end-effector could move, is reduced by 1, and, hence, 

the manipulator loses the ability to move the end-effector in a subspace in Rm that does not 

belong to )( aJcsp . To determine how the end-effector velocity, x& , lies in Rm relative to 

)( aJcsp , x&  could be divided into the two orthogonal components shown in equation (15). 
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)()(
)()(

xxx &&& ⊥+=
aa JcspJcsp

projproj  (15) 

where ⊥)( aJcsp  is the orthogonal complement of )( aJcsp ; ⊥)( aJcsp  is a subspace that implies 

a set of all the vectors in Rm that are orthogonal to the vectors in )( aJcsp ; the )(
)(

x&
aJcsp

proj  and 

)(
)(

x&⊥
aJcsp

proj are the projections of x&  onto )( aJcsp and ⊥)( aJcsp , respectively, which can be 

found from equations (16) and (17), respectively. 
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where )( aJB  is a matrix whose column vectors form an orthonormal basis that spans )( aJcsp .  

)()(
)()(

xxx &&&
aa JcspJcsp

projproj −=⊥  (17) 

A basis of aJ  is the set of all linearly independent column vectors of aJ . An orthonormal basis 

could be constructed from any basis by applying the Gram-Schmidt procedure, Norman (1995). 

 )( aJB could, alternatively, be determined from the Singular Value Decomposition (SVD) of aJ , 

Maciejewski (1990). 

An alternate method to find )(
)(

x&⊥
aJcsp

proj is by projecting x&  onto ⊥)( aJcsp  as presented in the 

following procedure: 

If u is a vector in ⊥)( aJcsp  and the set ( ) ( ) ( ){ }anaa JJJ
a 121 ,,, −ccc L  contain the column 

vectors of the matrix aJ , then u is orthogonal to all the column vectors of Ja. This is represented 

by the scalar product shown in equation (18). 
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One could notice from equation (18) that the solution of u lies in the null space of T
aJ . Therefore, 

all vectors belonging to ⊥)( aJcsp  lie in the null space of T
aJ . The null space of T

aJ will be 

represented by )( T
aJnsp . It is concluded that )()( T

aa JnspJcsp =⊥

 and ⊥= )()( T
aa JnspJcsp . 

Since ))(()( T
a

T
a JNcspJnsp = , then ))(()( T

aa JNcspJcsp =⊥ , where ( )T
aJN  is a matrix whose 

columns form an orthonormal basis for the null space of T
aJ .  )( T

aJN could be determined from 

the SVD of T
aJ . 

Therefore, )(
)(

x&⊥
aJcsp

proj can be found by projecting x&  onto the ))(( T
aJNcsp as follows: 

( ) ( )( ) xx &&
TT

a
T
aJcsp JNJNproj

a
=⊥ )()(  (19) 

If ( )( ) 0=x&TT
aJN  (i.e., 0)(

)(
=⊥ x&

aJcsp
proj ), then )( aJcsp∈x& . If, however, ( )( ) 0≠x&TT

aJN  then 

)( aJcsp∉x&  and, hence, the end-effector velocity is not realizable by the manipulator after joint 

jam. It should be noted that the number of rows and number of columns of ( )T
aJN  equal the 

number of rows of T
aJ  and the dimension of the null space of T

aJ , respectively. The dimension 

of the null space of T
aJ can be found from equation (20), Nakamura (1991). 

)(dim)ofcolumnsof#()(dim T
a

T
a

T
a JcspJJnsp −=  (20) 

In case of jam in one of the active single−DOF joints, then 1)(dim =T
aJnsp . 

2.2.3 Effect of Actuator Force Loss on Manipulator Velocity 

When a parallel manipulator loses the force of one of its actuators, equation (10) becomes 

xq && 1−= aa J        
( ) mn

a
n

a
m aa RJRR ×−−− ∈∈∈ 111 and,: qx &&  (21) 

In this sub-section, the inverse Jacobian matrix 1−
aJ  and the velocity vector aq&  will denote the 

reduced inverse Jacobian matrix and velocity vector, respectively, after actuator force loss. The 
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inverse Jacobian matrix, 1−
aJ , in equation (21) loses the row corresponding to the active joint 

whose force was lost. Because the number of independent rows of 1−
aJ  in equation (21) becomes 

smaller than the number of columns after failure, 1−
aJ  has a null space, )( 1−

aJnsp , in which 

0=aq&  for all )( 1−∈ aJnspx& , indicating that the end-effector could have an unconstrained motion 

of )( 1−∈ aJnspx&  even if all remaining active joints are locked. To determine how the end-effector 

velocity, x& , lies in Rm relative to )( 1−
aJnsp , x&  could be divided into the two orthogonal 

components shown in equation (22): 

)()(
)()( 11 xxx &&& ⊥−− +=

aa JnspJnsp
projproj  (22) 

where ⊥− )( 1
aJnsp is the orthogonal complement of )( 1−

aJnsp ; )(
)( 1 x&−

aJnsp
proj  and )(

)( 1 x&⊥−
aJnsp

proj  

are the projections of x&  onto )( 1−
aJnsp and ⊥− )( 1

aJnsp , respectively; and can be represented as 

( ) ( )( ) xx &&
T

aaJnsp JNJNproj
a

11
)( )(1

−−=−  and )()(
)()( 11 xxx &&& −⊥− −=

aa JnspJnsp
projproj , respectively. 

Similarly, since )()( 1 T
aa JcspJnsp −⊥− = , then any basis for )( T

aJcsp −  is a basis for ⊥− )( 1
aJnsp  

and )(
)( 1 x&⊥−

aJnsp
proj  could, alternatively, be found as xx && TT

a
T

aJnsp
JBJBproj

a
))(( )()(

)( 1
−−=⊥− . 

If 0))(( =− x&TT
aJB  (i.e., 0)(

)( 1 =⊥− x&
aJnsp

proj ), then )( 1−∈ aJnspx& , and therefore the end-effector 

velocity is unconstrained and cannot be controlled by remaining actuators. Meanwhile, if 

( )( ) 01 =− x&T
aJN  (i.e., 0)(

)( 1 =− x&
aJnsp

proj ), then ⊥−∈ )( 1
aJnspx& , and therefore, the end-effector 

velocity is controllable by the remaining actuator forces. If, however, 0)(
)( 1 ≠− x&

aJnsp
proj  and 

0)(
)( 1 ≠⊥− x&

aJnsp
proj , then x&  belongs to the union of both of )( 1−

aJnsp and ⊥− )( 1
aJnsp , which 
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indicates that part of the end-effector velocity is controllable and the other is an unconstrained 

motion. 

2.3 Effect of Active Joint Failure on Manipulator Force 

2.3.1 Theoretical Background 

The static force equation of the manipulator could be derived based on the principle of virtual 

work. The derivation neglects the effect of inertial forces, gravity and friction. The virtual work 

done by actuator forces and end-effector force can be written as: 

xFqτ δδδ T
a

T
aw −=      :  an

aa R∈qτ δ, , and mR∈xF δ,  (23) 

where aτ is the vector of forces of the active joints in the manipulator (forces for prismatic joints 

and torques for revolute joints); F is the vector composed of the components of the linear force 

and/or moment exerted by the end-effector; aqδ is the vector of virtual displacements of the 

active joints; xδ  is the virtual displacement vector of the end-effector. Substituting 0=wδ  and 

aaJ qx δδ =  in equation (23), then 

Fτ T
aa J=     

mnT
a

mn
a

aa RJRR ×∈∈∈ and,,: Fτ  (24) 

If m=na and the manipulator is in non-singular configuration (Ja is of full rank), then the forces 

of the active joints can be determined from equation (25). 

a
T

aJ τF −=      : aa nmT
a

n
a

m RJRR ×− ∈∈∈ and, τF  (25) 

2.3.2 Effect of Joint Jam on Manipulator Force 

When a single-DOF acive joint jams in the parallel manipulator, equation (24) becomes: 

Fτ T
aa J=     

( ) mnT
a

mn
a

aa RJRR ×−− ∈∈∈ 11 and,,: Fτ  (26) 

In this sub-section, the vector aτ  will denote the reduced force vector after active joint jam. 

After active joint jam, the number of rows of the matrix T
aJ  becomes smaller than the number of 
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columns and, therefore, T
aJ , has a null space, )( T

aJnsp , in which 0=aτ  for all )( T
aJnsp∈F . 

Having 0=aτ  indicates that the external load on the end-effector is resisted by the structure of 

the manipulator, not by the actuator forces. Any external force in the task space, mR∈F , applied 

on the end-effector can be divided into two orthogonal components: 

)()(
)()(

FFF ⊥+= T
a

T
a JnspJnsp

projproj  (27) 

where ( ) ( )( ) FF TT
a

T
aJnsp JNJNproj T

a
=)()(   

and  FF T
aaJnsp

JBJBproj T
a

))(( )()(
)(

=⊥ . 

If 0))(( =FT
aJB , then )( T

aJnsp∈F , and therefore, the external force exerted on the end-

effector is resisted by the structure of the manipulator. Meanwhile, if ( )( ) 0=FTT
aJN , then 

⊥∈ )( T
aJnspF , and therefore, the external end-effector force on the end-effector is resisted by 

actuator forces. If, however, 0))(( ≠FT
aJB  and ( )( ) 0≠FTT

aJN , then F  belongs to the union 

of ⊥)(and)( T
a

T
a JnspJnsp , and therefore, part of the external force applied on the end-effector is 

resisted by the actuator forces and the other part is resisted by the manipulator structure.
 

2.3.3 Effect of Actuator Force Loss on Manipulator Force 

As a result of actuator force loss, equation (25) becomes: 

a
T

aJ τF −=     
( )11 and;;: −×−− ∈∈∈ aa nmT

a
n

a
m RJRR τF  (28) 

The number of columns of the matrix, T
aJ − , after actuator force loss, becomes smaller than the 

number of rows and, therefore, the dimension of the column space, na–1, becomes smaller than 

the dimension of the desired task space, m. In this case, there is no solution of 1−∈ an
a Rτ  for any 

vector )( T
aJcsp −∉F . Force applied on the end-effector, mR∈F , could be divided into two 

orthogonal components:  
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)()(
)()(

FFF ⊥−− += T
a

T
a JcspJcsp

projproj  (29) 

where FF TT
a

T
aJcsp JBJBproj T

a
))(( )()()(

−−=−  
and ( ) ( )( ) FF T

aaJcsp JNJNproj T
a

11
)( )( −−=⊥− . 

If ( )( ) 01 =− FT
aJN , then )( T

aJcsp −∈F  and therefore, the external end-effector force is 

completely resisted by the actuator forces. If, however, 0))(( =− FTT
aJB , then ⊥−∈ )( T

aJcspF  

and therefore, the external force on the end-effector cannot be resisted by the remaining actuator 

forces, in which case, resulting in unconstrained motion. If, however, ( )( ) 01 ≠− FT
aJN  and 

0))(( ≠− FTT
aJB , then only part of the external force is resisted by the actuator forces. 

3. Example 

The determination of the post-failure velocity and static force capability is illustrated on the 3-3 

Stewart-Gough platform whose schematic diagram is shown in Figure 3. The diagram shows six 

extensible branches connecting a mobile platform to a fixed base by two sets of concentric 

spherical joints located at points Ai and Bi, which form two equilateral triangles in the fixed base 

link and moving platform, respectively. The points Ai and Bi, are located at distances a=0.3m 

and b=0.2m, respectively, from the triangle centers, O and P, respectively. An x-y-z coordinate 

frame is attached to the fixed base at its center O, where the x and y axes lie on the fixed base, 

with x-axis pointing in a direction opposite to OA3 and z pointing out of the plane of the fixed 

base. The vector di points from Ai to Bi and is expressed in the x-y-z coordinate frame. 
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Figure 3: A schematic diagram of the spatial 6-DOF 3-3 Stewart-Gough platform. 

 

The velocity equation (10) for the 3-3 Stewart-Gough platform can be written as, Tsai (1999), 
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where vp is the velocity vector of point P; ω is the angular velocity vector of the mobile 

platform; id&  is the rate of the prismatic active joint in ith branch; si is a unit vector along the 

direction of the ith branch; bi is the vector extended from point P to point Bi. The rotations of the 

moving link is expressed by vector θ =[θx,θy,θz]T (degrees) while the position of point P with 

respect to point O is expressed by vector p=[px,py,pz]T (meter). All vectors are expressed in the x-

y-z coordinates. To predict the velocity and force of the manipulator after the active joint in 

branch 2 is jammed, the second column of matrix aJ , which is obtained by taking the inverse 
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of 1−
aJ  in equation (30), is eliminated and ( )T

aJN  is determined. On the other hand, to predict the 

velocity and force of the manipulator after actuator force loss in branch 2, the second row of 

matrix 1−
aJ  is eliminated and ( )1−

aJN  is determined. In accordance with the analysis of Sections 

2.2 and 2.3 the equation of the velocities and forces of the example manipulator of Figure 3 after 

failure are listed in Tables 1 and 2. 

Table 1: Velocity and force criteria after active joint jam in branch 2. 

Velocity Criteria  Force Criteria Configuration: 
p=[px,py,pz]T  (meter), 

θ =[θx,θy,θz]T (deg) ( )( ) 0=x&TT
aJN  ( )( ) 0=FTT

aJN  

p=[0,0,.7]T , 

θ =[0,0,0]T 

(.328)vx+(.114)vy–(.917)vz 

–(.159)wx–(.092)wy–(.068)wz =0 

(.328)Fx+(.114)Fy–(.917)Fz 

–(.159)Mx–(.092)My–(.068)Mz =0 

p=[.2,−.3,.7]T , 

θ =[0,0,0]T 

–(.061)vx–(.475)vy+(.859)vz 

+(.149)wx+(.086)wy+(.058)wz =0 

–(.061)Fx–(.475)Fy+(.859)Fz 

+(.149)Mx+(.086)My+(.058)Mz =0 

p=[0,0,.7]T , 

θ =[20,10,30]T 

–(.357)vx–(.189)vy+(.900)vz 

+(.101)wx+(.115)wy+(.064)wz =0 

–(.357)Fx–(.189)Fy+(.900)Fz 

+(.101)Mx+(.115)My+(.064)Mz =0 

p=[.2,−.3,.7]T , 

θ =[20,10,30]T 

(.116)vx+(.494)vy– (.837)vz 

–(.119)wx–(.123)wy–(.090)wz =0 

(.116)Fx+(.494)Fy– (.837)Fz 

–(.119)Mx–(.123)My–(.090)Mz =0 

 

Table 2: Velocity and force criteria after actuator force loss in branch 2. 

Velocity Criteria Force Criteria Configuration: 
p=[px,py,pz]T  (meter), 

θ =[θx,θy,θz]T (deg) 
( )( ) 01 =− x&T

aJN  ( )( ) 01 =− FT
aJN  

p=[0,0,.7]T , 

θ =[0,0,0]T 

–(.263)vx–(.152)vy+(.056)vz 

+(.542)wx+(.188)wy+(.759)wz =0 
–(.263)Fx–(.152)Fy+(.056)Fz 

+(.542)Mx+(.188)My+(.759)Mz =0 
p=[.2,−.3,.7]T , 

θ =[0,0,0]T 

–(.234)vx–(.135)vy+(.059)vz 

+(.674)wx–(.122)wy+(.674)wz =0 
–(.234)Fx–(.135)Fy+(.059)Fz 

+(.674)Mx–(.122)My+(.674)Mz =0 
p=[0,0,.7]T , 

θ =[20,10,30]T 

−(.255)vx−(.159)vy+(.034)vz 

+(.228)wx+(.267)wy+(.886)wz =0 
−(.255)Fx−(.159)Fy+(.034)Fz 

+(.228)Mx+(.267)My+(.886)Mz =0 
p=[.2,−.3,.7]T , 

θ =[20,10,30]T 

(.253)vx+(.157)vy–(.043)vz 

–(.457)wx+(.127)wy–(.827)wz =0 
(.253)Fx+(.157)Fy–(.043)Fz 

–(.457)Mx+(.127)My–(.827)Mz =0 
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Before failure, the end-effector of 6-DOF 3-3 Stewart-Gough platform can have any velocity, x& , 

and apply any force, F , in the 6-dimensional task space. From Tables 1 and 2, it is noticed that 

after failure of one of the active joints, the velocity and force of the manipulator form two 5-

dimensional hyperplanes in 6R . Velocities and forces belonging to the corresponding 

hyperplanes must satisfy the hyperplane equations. The manipulator cannot have an end-effector 

velocity or exert any end-effector forces that do not belong to the corresponding 5-dimensional 

hyperplane. The coefficients of the velocity and force components in Table 1 form the vector that 

is normal to the 5-dimensional hyperplanes of the reduced velocity and force space after joint 

jam.  In Table 2, the coefficients of the velocity and force components form the vector that is 

orthogonal to the 5-dimensional hyperplanes of the reduced velocity and force space after 

actuator force loss. Any force projected on the orthogonal vector is unconstrained and the 

manipulator will have uncontrollable motion. By applying this analysis, one could simulate the 

post-failure motion and workspace of the manipulator and determine the capability of the 

manipulator to exert the desired task force in any configuration during the motion simulation. 

This information could be obtained analytically before deciding to repair the manipulator or 

abort the task. 

4. Conclusion 

The reduced velocity and force capabilities of parallel robots after joint jam and loss of actuator 

force could be determined by finding the null space vectors of the transpose of the Jacobian 

matrix and its inverse, respectively. Prediction of the post-failure velocity and force performance 

of the manipulator is useful for maintenance planning when the manipulator operates in remote, 

hazardous environments or when failure is critical in the operation. In these circumstances, 

knowing whether or not the manipulator is still capable of completing the task could be very 



 21 

 

critical. The results of the analysis in this study could be used to determine the error between the 

post-failure actual motion and the desired motion specified by the task. Also, knowledge of the 

effect of active joint failure on the velocity and force capability of the manipulator will enable 

designers to incorporate measures to overcome the reduced performance and provide fault 

tolerance. Currently the effect of having redundant hardware components in providing fault 

tolerance against active joint failure is being explored. 
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