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Abstract

This paper presents a graphical solution method to solve the direct kinematic problem of Star translational
parallel manipulators of general geometry. The method allows to find all real solutions of this problem from a
given set of actuated joint positions, which is equivalent to find the intersection points of three meridian-circular
screw surfaces. Algebraically, this problem reduces to solve six nonlinear equations in six unknowns, from which

it may exist more than two reals solutions.

Résumé

Cette article présente une méthode de solution graphique du probleme géométrique direct des manipulateurs
translationels Star de géométrie générale. Cette méthode permet le calcul de toutes les solutions réelles de ce
probleme pour des positions connues des actionneurs, qui est équivalente & déterminer les points d’intersections de
trois surfaces hélicoidale & méridien circulaire. Algébriquement, ce probleme réduit 4 la solution de six équations

nonlinéaires & six inconnus pour lequel il peut exister plus de two solutions réels.

1 Introduction

Robotic manipulators can be classified in four different categories, i.e., serial, parallel, tree-type and hybrid,
based on the structure of their chain. In general, parallel manipulators (PMs) consist of two main bodies coupled
via n legs. The fixed body is designed as the base, while the other is movable and called the end-effector (EE)
of the manipulator. As shown in Fig.1, the Y Star PM [1] is capable to generate 3D translations of its EE,
at constant orientation, and hence, is designated as a translational parallel manipulator (TPM). The direct
kinematic (DK) problem pertains to determine the EE pose—i.e. the position and the orientation—from a
set of joint positions. Conversely, the inverse kinematic problem (IK) consists to determine the actuated joint

positions from the pose of the EE. For PM, the latter is usually straightforward, while the former is much more
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Figure 1: The Y Star TPM of topology 3-RHIIR

challenging [2]. The different DK solutions are also called assembly modes, since they correspond to different
ways of assembling the PM, for a given set of actuated joint positions.

For the Star TPM, it is possible to assemble each leg to the EE above and below the plan of the three screws,
while maintaining the position of link 3 along the three screw axes, and hence, the Star should have only two
assembly modes. Although this reasoning being perfectly true, the Star TPM doesn’t maintain the position of
link 3, but rather maintains the rotation of link 2 with the three motorized revolute joints. Thus, a rotation of
the 4-bar linkage around its corresponding screw produces a passive displacement of link 3 along the screw axis
based on the pitch of the screw. Several authors (e.g.,[3]) have neglected this passive displacement, including
the authors themselves of this paper [4, 5]. This paper presents a graphical solution of the DK problem of Star

TPMs of general geometry and shows that these TPMs can have more than two real assembly modes.

2 Kinematic Model

The kinematics of robotic manipulators can be described with the concept of kinematic chain, which carries
both topological and geometrical informations. A kinematic chain is defined as a mechanical system in which
rigid bodies, called links, are coupled by lower kinematic pairs. There are six of such pairs, namely, revolute (R),
prismatic (P), cylindrical (C), helicoidal (H), planar (E), and spherical (S). Moreover, a circular path at constant
orientation describes by the output link of planar 4-bar RRRR linkages is assimilated as a 1-DOF pair, namely
the II joint [6]. The topology refers to the layout of these pairs along the chain, while the geometry refers to the
relative location of the pairs on each link. The Star TPM is composed of three chains of topology RHIIR, i.e.,
an actuated R joint—denoted R—connecting link 1 to link 2 (also called the screw), a passive H joint connecting
link 2 to 3, two passive R joints connecting links 4 and 5 (also called the leg) to link 6, and a passive R joint

connecting link 6 to link 7, i.e., the EE.
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Figure 2: Geometric parameters of the base

2.1 Geometric Parameters

The general geometry of the base A can be described in frame A with three frames {A4;}3 located at points
{A;}3 with there respective z-axis along the actuated screw axis {e;};. As shown in Fig. 2, the position vectors

of points A; are given in A as

a; =wuni, ay =axj+ Ry(az)vi,

az = dzi+ R, (B3)(asj + Ry (asz)vsi), (1)
while the orientation of the actuated screw axes are given in A as
e, =R;i, i=1,23, (2)
with R; defined as the orientation of A; in A4, i.e.,
R, =1, R; = Ry(az), Rz = R, (f3)Ry(as), (3)

where vy, as, as, va, ds, B3, a3, ag and v are the nine geometric parameters allowing to describe the general
geometry of the base, R, () denotes the 3 x 3 rotation matrix of an angle § around axis a, while i, j, k are the
unit vectors along z-, y- and z-axis, respectively. In order to maintain the translational mobility of the EE, the
passive revolute joint axes between links 2-3 and 6-7 must always be parallel to the actuated joint axis e; of the
corresponding leg. Therefore, the rotation matrix describing in 4 the orientation of frame B attached to the EE,
denoted B, is given as

RA = 133 (4)

In this context, the geometry of the EE can be described with the help of three arbitrarily located points {B;}3

together with the same unit vectors {e;}? along the passive revolute joint axes connecting links 6 to the EE. The
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Figure 3: Kinematic loop of leg i

position vectors of points B; in frame B are given as
by =vii, by =abj + Ry(az)vhi,
bz = d3i + Ro(f3)(as] + Ry(as)vsi) (5)
where v}, a}, v}, dj, aj and v} are the six geometric parameters describing the geometry of the EE.
2.2 Closure Equation

Each leg of the parallel manipulator defines a kinematic loop passing through the origin of frames A and B,

and points A4;, C; and B;. As shown in Fig. 3, the closure of each kinematic loop can be expressed in the form
a; +¢ge +m;=p+b;, =123 (6)

where ¢; is the displacement of C; relative to A; along the screw axis e;, m; the position vector B; relative to
C; in A, and finally, p the position vector of the origin of B in A. The knowledge of the actuated joint angle
#; doesn’t allow directly to compute g;, the corresponding displacement of C; from A; along e;. Indeed, g; is
composed of two displacements: an actuated displacement ¢;, due to the rotation #; of the motor, and a passive

displacement g;;, due to the rotation «y; of the leg around the screw axis, and hence, we have
pi
¢ = Gai + qpi = %(91' + i) (7)

where p; is the pitch of screw i. As shown in Fig.4, vector m; depends on +;, but also on the other passive (and

unknown) rotation ¢; around the II joint of the 4-bar linkage, which can be written as
m; = [;RiR, (7i)Ry (0:)k. (8)

The unknown +; greatly complicates the kinematics of this manipulator, since it appears linearly in eq.(7) and

through transcendental functions in eq.(8).
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Figure 4: Vector m; depends on both ~; and ¢; angles

2.3 Inverse Kinematic Problem

For a given manipulator geometry, the IK is to find the actuated joint positions {#;}? from a known position

p of the EE. Since the length of each leg—link 4 in Fig.1—is l;, computing the norm of m; with eq.(6) gives

qf — queg’ui + ulTul- — l? =0, (9)

with u; defined as

u; =p+b; —a;. (10)

Apparently, eq.(9) is quadratic in ¢;, and hence, there are two IK solutions for each leg, i.e.,

@ = elu £ \f(elu)? — ulu; + 2 (11)

Once ¢; known, eq.(7) can be used to compute the actuated joint angles 6;, i.e.,

27
bi = —a— 7, (12)
bi
while v; depends on the EE position and is given as:
kTRlT(]. - eieiT)ui

; = E arccos ,
" [ —eeu |
which solve the IK problem.

2.4 Direct Kinematic Problem

The solution of the DK problem requires to find p that satisfy simultaneously the three kinematic loops

associated to the legs of the TPM. Upon substituting eqs.(7) and (8) into (6), we obtain

p=d; +si(7i, ¢:), (14)
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Figure 5: Possible leg end-point positions: the circle is obtained for different ¢; at a constant v;, while each
helicoidal curve is obtained for different v; at a constant ¢; along the screw axis e; with a pitch p; (shown here
with a very large pitch)

with
di = a; — bi: (15)
Di
si(vi, 0i) = %(91' +7i)ei + LRR, (7)) Ry (¢)k, (16)

where d; is the position vector of point D; and s;(v;, ¢;) a meridian-circular screw surface! described by the
two unknown passive rotations 7; and ¢;, as shown in Fig.5. Therefore, the solution of the DK problem is the

intersection points, {py, }¥, of three of such surfaces, i.e.,

di +si1(71,¢1) = do+sa(72,02), (17)

di +s1(71,¢1) = ds+s3(73,03), (18)

which is a set of six nonlinear equations in six unknowns: 71, ¢1, Y2, @2, 73 and ¢3, whose solutions {vi,
b1,72,02,73,03 1< allow to compute {py}. Whenever the pitch is zero, i.e. p; = 0, the DK problem of eqs.(17)
and (18) reduces to the intersection of three spheres, which has a maximum of two real solutions. Alternatively,
when the pitch is different than zero, i.e. p; # 0, the maximum number of real solutions may be much more than

two as we have shown in a previous work [7]. Unfortunately, it is not possible to follow an algebraic approach

!Based on a personal discussion with prof. Manfred Husty from University of Loeben, Austria.
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Figure 6: The three meridian-circular screw surfaces of the Y Star TPM shown here at a very large pitch

to solve this nonlinear system of eqs.(17) and (18), because the unknown ¢; simultaneously appear linearly and

through transcendental functions. Below, we rather propose a graphical approach to solve this problem.

3 Graphical Solution Method

In this section, we present the different steps to solve the DK problem using a Computed-Aided Design (CAD)
system, which is in our case Catia V5R8. The solution method is valid only for TPM, since in this case the
geometry of the EE is known also in the based frame, and hence, can be subtracted from the geometry of the
base as described by points D;. The translation of each screw from A; to D; provides that all legs share the
same attachment point to the EE, and hence, the DK problem can be solve as finding the intersection points of

three shifted meridian-circular screw surfaces.
3.1 Meridian-Circular Screw Surfaces
In the Wire-frame and Surface Design workshop of Catia it is possible to create meridian-circular screw

surfaces with the sweep feature by sweeping a circle along an helicoidal curve created by an Helix feature. Each

meridian-circular screw surface is modeled in frame 4;, and then shifted by vector —b; as follows:
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Figure 7: Intersection curves C5 and Cy3 with the intersection points denoted * of the two curves in 3D Cartesian
space for the Y Star TPM (8 real solutions)

1. create a circle of radius [; centered at the origin in the zy-plan of frame A; is rotated around the x-axis of
an angle 6; and translated accordingly with the pitch p;, thus defining the so-called initial circle as the one

shown in Fig. 4;

2. create an helicoidal curve of pith p; along e; from an arbirairy point of the circle with the Heliz feature

such as those shown in Fig. 5

3. create a meridian-circular screw surface with the sweep feature by sweeping the circle as the profile and

the helicoidal curve as the guide curve with the given pitch p;;
4. finally, shift the surface by —b; such as those shown in Fig. 6.

It is noteworthy that each surface represent a set of possible locations of p in A through a specific leg. Since the
legs must all be simultaneously satisfied, the real solution to the DK problem are thus the intersection points of

the three surfaces.

3.2 Intersection Curves

Before finding the intersection points, we first compute the intersection curve of the surfaces taken two by two
with the Intersection feature of the Wire-frame and Surface Design workshop of Catia. The intersection curve
of the surfaces 1 and 2, namely C,, is the solution of eq.(17), while the intersection curve of the surfaces 1 and

3, namely C}3, is the solution of eq.(18) as shown in Fig.7.
3.3 Intersection Points
Each intersection curve, i.e. C12 and C}3, are continuous closed contours in 3D Cartesian space. The inter-

section points of these two contours provide all real solutions to the DK problem, which is also computed with

the Intersection feature of Catia and shown in Fig.7.
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4 Kinematic Simulation and validation

With the Digital Mock-Up workshop of Catia, it is possible to perform kinematic simulation of the Star TPM
and also use it as a validation tool of the DK solutions. Obviously, we must be able to assemble the TPM at
each of the real DK solution as we have shown in a previous work [7]. Moreover, the our implementation of this
graphical solution method is generic in the sense that the geometry of the TPM is modeled in the CAD system
as parameters through the concept of tables.

As a numerical example, we will compute all DK solutions of the Star TPMs with intersecting coplanar screw
axes at 1207, i.e., v; = 100, vo = 100, vz = 100, a2 = 0, a3 = 0, ay = 27/3, f3 = 0, ag = —27/3, I = 100
I, = 100, I3 = 100, p; = 140, p> = 140, p3 = 140; where the lengths are expressed in a nondimensional units,
called u, and the actuated joints position are chosen as follows: 6, = —2rad, 6 = —2rad, 63 = —2rad.

Using a CAD system, the three surfaces sy, so and s3 are generated, the intersection curves Cio and Ci3 are
found, from which the intersection points {py}¥ are computed and reported in Tables 1. Apparently, the Star

TPM has in 12 DK solutions, and hence, has also 12 assembly modes as those shown in Fig.8.

Solution x Y z
P1 8.015 | 43.852 | -65.557
P2 -7.176 | 17.638 | -62.375
Ps -34.660 | 44.503 | -16.562
P4 0.069 | 72.329 0.052
Ps 31.767 | 44.465 | -21.724
Ps 52.833 | 43.735 | 39.654
P7 3.027 | 44.321 | 38.412
Ps 57.666 | 17.571 | 42.928
Po -60.722 | 43.603 | 25.988
P1o -50.407 | 17.578 | 37.451
P11 0.036 | -30.082 0.085
P12 0.070 | -83.667 0.085

units u u u

Table 1: The 12 real DK solutions of the Star TPM with a very large pitch at the given configuration

5 Conclusion

We have formulated in this paper the direct kinematic problem of Star translational parallel manipulators of
general geometry. The solution of this problem is equivalent to find the intersection points of three meridian-
circular screw surfaces, which can have in general many intersection points. When the pitch of the screws is set
to zero (in this case the topology would be described as 3-RPIIR) the DK problem reduces to the intersection
points of three spheres, and hence, has in this case a maximum of two intersection points. The graphical solution
method makes use of a CAD system to model the different surfaces in order to let it computes the intersection

curves, and finally, the intersection points between the two curves.
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(a) assembly mode 1 (d) assembly mode 7

(b) assembly mode 3 (e) assembly mode 9

(c) assembly mode 5 (f) assembly mode 11

Figure 8: Assembly mode 1, 3, 5, 7, 9 and 11 of the Star TPM
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