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Abstract:  In this paper, a method is presented for the synthesis of 3-RRR manipulators.  The 
method uses a genetic algorithm while considering three different design criteria: the 
optimization of the manipulator workspace to approach a prescribed workspace, the 
maximization of the manipulator’s dexterity and the avoidance of singularities inside the 
manipulator workspace.  It is shown that, for a given manipulator, some working modes do not 
have any corresponding singularity curves located inside the manipulator workspace.  
Furthermore, a case is presented where, for a given orientation range of the manipulator’s mobile 
platform, there are no parallel singularities located inside the workspace. 
 
Résumé: Cet ouvrage présente une méthode de synthèse pour les manipulateurs 3-RRR.  La 
méthode se base sur l’utilisation d’un algorithme génétique en considérant trois différents critères 
de conception: l’optimisation de l’espace atteignable du manipulateur pour approcher un espace 
prescrit, la maximisation de la dextérité du manipulateur ainsi que l’évitement de la présence de 
singularités dans son espace atteignable.  Il est démontré que, pour un manipulateur quelconque, 
il est possible que certains modes de fonctionnement n’aient pas de courbes singulières 
correspondantes à l’intérieur de l’espace atteignable du manipulateur.  En fait, un cas est présenté 
dans lequel il n’y a pas de courbes singulières dans l’espace atteignable du manipulateur pour 
plusieurs orientations de sa plate-forme mobile. 
 

1. INTRODUCTION 
It is a well known fact that the design of parallel manipulators is less intuitive than that of 

their serial counterparts.  One reason for this is the increased number of parameters needed to 
define this type of manipulator.  Furthermore, several of the criteria used during the design phase 
are of a contradictory nature thus making their optimization a difficult exercise.  Therefore, 
numerous design methods have been developed by researchers to aid the designers of parallel 
manipulators[1~4].  Many of these methods use the manipulator’s workspace as well as its 
kinematic properties as design criteria. 

In this paper, a design method is presented for a general three-degree-of-freedom (3-DOF) 
planar parallel manipulator with revolute joints in which the first joint of each chain is actuated 
(3-RRR).  The interesting property of this manipulator is that its revolute actuators are attached to 
the base thus reducing the inertia of its mobile parts.  The design criteria used in this work are the 
manipulator’s workspace, dexterity and singularities. 

Previous studies of the singularities of the 3-RRR manipulator are quite recent.  Gosselin and 
Wang[5] were apparently the first researchers to attempt the determination of these singularities.  
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They derived a high degree polynomial corresponding to all of the singularities of the 3-RRR 
manipulator.  Afterwards, this work was revised by Bonev and Gosselin[6] who succeeded in 
reducing the degree of the polynomial to a minimal value.  Both of these papers contained a 
graphical representation of the singularity loci using a discretization approach. 

To the authors’ knowledge, no prior research has been done on the optimization of the 3-RRR 
manipulator while trying to avoid the presence of singularities inside the workspace.  In this 
work, the singularity criterion is combined with the optimization of the workspace to approach a 
prescribed workspace, as well as with the maximization of the manipulator’s dexterity.  The goal 
of the synthesis is to obtain a manipulator suitable for a specified task. 

Because of the apparent complexity of the manipulator synthesis, a genetic algorithm is 
chosen as the optimization method due to its good convergence properties.  Genetic algorithms 
have been used by several researchers in the design and optimization of parallel manipulators[7~9].  
Specifically, the work of Gallant and Boudreau[10] is mentioned here since it shares many of the 
objectives of this paper. 

The results section of this work concentrates on demonstrating the ability of the method to 
consistently converge towards acceptable solutions.  An effort is also made to emphasize the 
beneficial effect of dexterity optimization.  Finally, an interesting result regarding the 3-RRR 
manipulator’s singularities is presented. 
 
2. GEOMETRIC DESCRIPTION OF A 3-RRR MANIPULATOR 

A general 3-DOF planar parallel manipulator with revolute joints is shown in Figure 1.  It 
consists of a triangular mobile platform, B1B2B3, and a fixed base, O1O2O3, joined by three 
kinematic chains.  Each kinematic chain is formed by a proximal link, OiAi, and a distal link, AiBi 
with the joints located at Oi, Ai, and Bi being of the revolute type (in this paper i = 1, 2, 3).  The 
length of the proximal links is l1, while l2 is the length of the distal links.  The vectors along lines 
OOi, OiAi, OiBi, and O'Bi are represented by oi, ui, ri, and si, respectively. 
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Figure 1  Three-degree-of-freedom planar parallel manipulator with revolute joints 
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We first define a coordinate system fixed to the base of the manipulator, called the base 
frame, with center O and axes X and Y.  Similarly, we then define a coordinate system fixed to the 
mobile platform, called the mobile frame, with center O' and axes X' and Y'.  Henceforth, the 
superscript ' will be used to denote vectors expressed in the mobile frame whereas no superscript 
will be used when expressing vectors in the base frame.  The pose (the position and orientation) 
of the mobile platform, expressed relative to the base frame by the position vector v = [x,y]T and 
the angle N, can be modified by the revolute actuators located at points Oi.  The output x of the 
manipulator is thus: 

x = [x, y, N]T (1)
Conversely, the input φ of the manipulator is represented by the angular positions of the 

revolute actuators (θi) measured from the X axis to each of the proximal links: 
φ = [θ1, θ 2, θ 3]T (2)

The 14 variables to be optimized during the manipulator synthesis are:  O1x, O1y, O2x, O2y, O3x, 
O3y, B'1x, B'1y, B'2x, B'2y, B'3x, B'3y, l1, l2. 

 
3. WORKSPACE DETERMINATION AND OPTIMIZATION 

Many definitions exist for the workspace of parallel manipulators[11~12].  In this paper, the 
constant orientation workspace is chosen.  This type of workspace corresponds to the set of 
positions reachable by the mobile platform as it translates in a plane at a fixed orientation. 

 
3.1 Workspace Determination 

The geometrical method[13] will be used here for the determination of the manipulator’s 
workspace.  With this method, the constant orientation workspace of a planar parallel manipulator 
can be found as the intersection of annular regions corresponding to the reachable workspaces of 
its kinematic chains. 

Based on the definitions provided in the previous section, the following equation can be 
written representing the vectors joining points Oi and Bi: 

ri = v + Rsi′ - oi (3)
In the above expression, R is a 2x2 rotation matrix representing the orientation of the mobile 
system relative to the base system.  The annular regions corresponding to the reachable 
workspaces of the kinematic chains are defined by pairs of concentric circles with radii equal to 
the maximum and minimum amplitudes of ri.  The expression for the amplitude of ri can be 
obtained from Eq. (3): 
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Also, from Figure 1, it can easily be seen that: 
21maxmin/ ll ±=ir  (5)

which corresponds to the configurations where the proximal and distal links are aligned.  
Squaring the right hand sides of Eqs. (4) and (5), we obtain, after simplification : 
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iyiyixi

ixiyixi

OBBb

OBBa

+′−′−=

+′+′−=

φφ

φφ

cossin

sincos
 (7)



 4

For a constant orientation of the mobile platform, the centers of the circles are fixed and three 
pairs of concentric circles are obtained.  The workspace consists of the intersection of these 
regions.  In some cases, the intersection of the annular regions is composed of two or more closed 
areas.  When this situation occurs, only one of the areas is selected for use in the optimization 
process since the manipulator cannot move from one area to another without being reassembled. 

 
3.2 Workspace Optimization 

The first optimization goal in this work is to obtain an actual manipulator workspace that 
resembles as much as possible a prescribed workspace.  Figure 2 shows an actual workspace (Ra) 
and a prescribed workspace (Rp).  The intersection of the workspaces is defined as Ri = Ra ∩ Rp.  
The sections of both workspaces, actual and prescribed, that do not intersect are R'a = Ra – Ri and 
R'p = Rp – Ri, respectively.  The sum of R'a and R'p represents the error on the actual workspace.  
The area of the error, computed with the Gauss-Divergence theorem, is minimized in the 
optimization cycle[14]. 
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Figure 2  Prescribed and actual workspaces with identification of the regions 

 
In some cases, it might be necessary to have the manipulator be capable of reaching the entire 

prescribed workspace.  Although no results are presented here, this can be accomplished by 
applying a condition in the algorithm verifying that the prescribed workspace is located entirely 
inside the actual workspace. 

 
4. JACOBIAN MATRIX DETERMINATION 

In this section, the analytical development of the manipulator’s Jacobian matrix is presented.  
The formulation used is primarily taken from Bonev and Gosselin[6]. 

We begin by defining unit vectors ni directed along the distal links.  The following relation 
can thus be obtained for each kinematic chain: 

l2ni = v + Rsi′ - ui - oi (8)
By squaring both sides of Eq. (8) and applying the law of cosines: 

l2
2 = (v + Rsi′ - ui - oi)T(v + Rsi′ - ui - oi) (9)

 
l2

2 = ||ri||2 + l1
2 -2ri

Tui (10)
Furthermore, from Figure 1, it is seen that: 
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Now, since ai and bi are constants for a given orientation of the mobile platform, Eq. (10) can 
be rewritten as: 
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The previous equation establishes a relation between the input variables (φ) and the output 
variables (x) of the manipulator.  For a real solution to Eq. (13) to exist, the following condition 
needs to be satisfied: 

( ) ( ) 0222 ≥Γ≡−−+− iiii pbyax  (14)
 
If Γi > 0, two solutions exist to Eq. (13) as expressed in the following: 
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where ρi = ||ri||2 and δi = ±1.  Eq. (15a) is not valid if ρi = 0, which may occur only when l1 = l2 
and Bi ≡ Oi. 

The solutions presented in Eq. (15) correspond to the two possible configurations of each 
kinematic chain for a given manipulator posture.  Consequently, ∆j = [δ1, δ2, δ3] is established as 
the working mode index (j = 1,2,…,8).  The working modes of a 3-RRR manipulator, as defined 
by Chablat and Wenger[15], identify the different solutions to its inverse kinematic problem (IKP).  
Since there are potentially 8 different solutions to the IKP of a 3-RRR manipulator, ∆j can take 
the following values: 

∆1 = [1, 1, 1] 
∆2 = [-1, 1, 1] 
∆3 = [1, -1, 1] 
∆4 = [1, 1, -1] 

∆5 = [-1, -1, -1] 
∆6 = [1, -1, -1] 
∆7 = [-1, 1, -1] 
∆8 = [-1, -1, 1] 

(16)

In order to obtain the Jacobian matrix, we first calculate the derivative of Eq. (9) with respect 
to time: 
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where E is equivalent to R evaluated at N = π/2 and: 
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By manipulating Eq. (17) and expressing it in vector form, the following expression can be 
found: 
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Finally, by combining Eqs. (15a) and (19), we get the following expression: 
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which can be expressed in matrix form as: 

0
00

00
00

.

33

22

11

1

.

33232

22222

1212

=+=
















Γ
Γ

Γ
+
















..1

JxJx
Esnn
Esnn
Esnn

ϕϕ
δ

δ
δ

ϕx
TT

TT

TT

l
ll
ll
ll

 (22)

In the above expression, Jx and Jφ are the manipulator’s 3x3 Jacobian matrices.  These matrices 
can be combined to obtain a single Jacobian matrix that establishes the inverse transformation 
between the input and output velocities: 

J = -Jφ-1Jx (23)
 
 
5. SINGULARITY ANALYSIS 

The singularities of parallel manipulators have been studied extensively by Gosselin and 
Angeles[16].  From this study, two main types of singularities may occur:  serial and parallel.  
Serial singularities (det(Jφ) = 0) occur at the boundaries of the workspace when Γi = 0, and are 
already considered during workspace determination.  On the other hand, parallel singularities 
(det(Jx) = 0) correspond to manipulator configurations in which the three distal links are either 
parallel or intersect at a single point.  These singularities are considered during the design process 
since they may be located inside the manipulator workspace where they would cause significant 
control problems. 

From Eqs. (21) and (22), it can be seen that Jx is a function of ∆j.  Consequently, a different 
Jacobian matrix (and thus a different set of singularities) exists for each working mode of the 
manipulator.  In order to show the complexity of the singularity curves, an example of a 3-RRR 
manipulator studied in [6] is shown in Figures 3 and 4.  In the latter, the singularities associated 
with each working mode are shown separately. 
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Figure 3  Example of the singularity curves for all eight working modes of a 3-RRR manipulator 
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Singularity curves
Workspace  
 

Figure 4  Example of singularity curves for a 3-RRR manipulator’s individual working modes 
 

Since the expression for det(Jx) contains radical terms ( iΓ ), the analytical determination of 
the singularities for each working mode is impossible.  Bonev and Gosselin[6] succeeded in 
eliminating the radicals by combining the equations for each working mode.  The result is a 
polynomial of degree 42 in X and Y representing the singularities of all working modes.  In spite 
of this, the size and complexity of this expression make the algebraic manipulation of the 
singularities very difficult.  Therefore, the determination of the parallel singularities and the 
verification of their presence inside the manipulator workspace are accomplished using numerical 
methods. 
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5.1 Singularity Determination 
The determination of the parallel singularities consists in finding the set of positions in the 
manipulator’s workspace where the determinant of Jx is null.  In order to achieve this, we proceed 
to a discretization of the workspace, thus obtaining a set of points at which the determinant of Jx 
is evaluated.  Singular positions are found when a sign change of det(Jx)  occurs between 
consecutive points.  With the objective of finding the singularities with greater accuracy while 
maintaining a reasonable search time, the workspace points are swept along both the X and Y 
axes.  Furthermore, a coarse discretization is used as a primary sweep and, when a sign change is 
found between consecutive points, the workspace between these points is further divided during a 
secondary sweep.  Once an array of singular points has been found, an algorithm similar to the 
modified gift wrapper algorithm[17] is used to sort and divide the points into singularity curves 
which can then be plotted.  This procedure is repeated for each of the manipulator’s eight 
working modes (∆j). 

 
 
5.2 Singularity Avoidance 

It is essential for a parallel manipulator’s workspace to be free of singularities since near these 
configurations, the control of the mobile platform becomes very difficult.  Consequently, during 
the optimization process, the workspace of each manipulator that is encountered needs to be 
verified for the presence of singularities. 

In this paper, it is supposed that the manipulator will operate in one working mode only.  In 
the case of the 3-RRR manipulator, this implies that the mobile platform will never be allowed to 
reach the workspace boundaries during its operation.  Situations in which working mode changes 
may occur are thus avoided.  Furthermore, this does not represent a great limitation to the 
operation of the manipulator since its dimensions can always be scaled to obtain a workspace 
slightly larger than the task area.  Because of this condition, only the singularities relating to one 
of the eight working modes of the manipulator need to be avoided. 

The task of verifying the presence of singularities in the manipulator’s workspace is 
complicated by the fact that an analytical method cannot be used.  Moreover, because the 
procedure must be repeated many times during the optimization process, methods based on the 
discretization of the workspace would be very time-consuming.  Therefore, a method based on 
the discretization of the workspace boundaries is chosen.  This method assumes that all of the 
singularity curves intersect the workspace boundary.  In fact, this hypothesis is not entirely valid, 
as closed singularity curves located entirely inside the workspace are possible.  However, since 
this situation occurs rarely, the optimization process considers only singularity curves that 
intersect the workspace boundary.  Once a manipulator is found, a visual inspection of the 
singularities of the optimized manipulator is conducted to ensure no closed singularities are 
within the workspace. In fact, in the 120 simulations that were run, approximately 5% contained 
closed singularities located entirely inside the workspace.  

The discretization of the workspace boundary is simple since the latter is expressed as a set of 
circular arcs.  The determinant of Jx can thus be evaluated at points on the arcs separated by 
specified angle increments.  As soon as a sign change of det(Jx) occurs between consecutive 
points, the presence of singularities inside the manipulator’s workspace is confirmed. 
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6. DEXTERITY OPTIMIZATION 
The dexterity can be considered as the ability of the manipulator to perform small 

displacements at a specified pose of its workspace.  It is based on the condition number of the 
Jacobian matrix: 

min

max

σ
σ

κ =  (24)

where maxσ  and minσ  represent the maximum and minimum singular values of J, respectively.  
Since κ can reach values from 1 to ∞, η = 1/κ is used, bounding the dexterity between 0 and 1 
where a value of unity represents a perfectly isotropic matrix. 

To compute the condition number of a matrix with Eq. (24), an ordering of the singular values 
of the matrix is required.  However, since the 3-RRR manipulator is used for both positioning and 
orienting tasks, the entries of its Jacobian have different units, making such an ordering 
impossible.  Therefore, the Jacobian matrix needs to be modified to render its units homogeneous. 

The approach used here is very similar to the one proposed by Gosselin[18].  The method 
consists of expressing the position and orientation of the manipulator’s mobile platform with the 
Cartesian coordinates of three points on the platform (C, D, and E) instead of with the current 
output vector x = [x, y, N]T.  By doing this, the vector of output velocities becomes: 
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x  (25)

where [ ]T
cycxc vv ,=ν , [ ]T

dydxd vv ,=ν , and [ ]T
eyexe vv ,=ν  are the Cartesian velocities of points C, 

D, and E, respectively.  The relationship between the output and the input velocities changes to: 
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In the above equation, [ ] T
ccc yx ,=p , [ ] T

ddd yx ,=p  and [ ] T
eee yx ,=p  are the position 

vectors of points C, D, and E.  It can be noted that S will not introduce singularities in the 
velocity relationship as long as the chosen points are distinct.  The dexterity of the manipulator 
can then be estimated by the condition number of J′ whose entries have all the same units. 

The choice of points C, D, and E has a direct influence on the value of the conditioning of J′  
and can induce errors in the comparison of the dexterity of different manipulators.  It was found 
by Kim[19] that the points yielding the lowest condition number for J′ are set on the vertices of an 
equilateral triangle centered at the centroid of the mobile platform’s attachment points (B1, B2, 
B3).  Furthermore, it was found that, for optimal dexterity, the sides of this triangle should be in 
the same order of length as the size of the platform.  Also, since the orientation of the triangle 
does not affect the conditioning, the selection of the points need not take into account the 
orientation of the mobile platform.  In this work, points C, D, and E were thus chosen on an 
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equilateral triangle centered at the centroid of the mobile platform with sides having a length 
equal to the maximal distance between each of the platform’s attachment points and its centroid. 

Since the dexterity (η) is a local property of the manipulator, a global conditioning index 
(GCI) was introduced by Gosselin and Angeles[20] to measure the former throughout the 
manipulator’s workspace.  The GCI is computed by discretizing the workspace, calculating η at 
each point obtained and then computing its average over the workspace. 

Since the Jacobian is dependant on the manipulator’s active working mode, so will the GCI.  
Consequently, during the optimization process, the GCI is computed for each of the 
manipulator’s eight working modes (∆j) with the goal of finding the one for which it is 
maximized.  However, before evaluating the GCI for a particular working mode, the presence of 
singularities corresponding to this working mode inside the manipulator’s workspace is verified.  
If singularities are present inside the workspace, the GCI is not computed for the corresponding 
working mode since the solution is not acceptable. 
 
7. GENETIC ALGORITHM 

A genetic algorithm is a non-traditional optimization method based on the Darwinian 
survival-of-the-fittest evolutionary theory.  The method is based on the creation and evolution of 
many individuals that, through several generations, become stronger. 

Each randomly created individual represents a set of manipulator parameters.  The strength of 
these individuals is evaluated using an objective function based on the optimization goals of the 
manipulator:  error on the workspace area, singularity avoidance, and dexterity.  The evolution of 
the individuals is accomplished using genetic operators such as selection, crossover and mutation 
until the method converges towards an optimal solution.  A real-coded genetic algorithm is used 
in this work since it has been shown[21] that this type of algorithm has a better performance than a 
binary-coded one.  In this work, a population of 100 individuals was optimized using a maximum 
of 100 generations. 
 
8. RESULTS 

One of the design criteria used in this work is for the optimized manipulator to have at least 
one working mode that doesn’t have any corresponding singularity curves located inside the 
workspace.  The results presented in this section show that this criteria can be satisfied.  
However, since this work seems to be the first that succeeds in optimizing the 3-RRR 
manipulator while considering singularity avoidance, it is also interesting to note that some 
manipulators, for all working modes, do not have any singularity curves located inside their 
workspace for several different orientations of their mobile platform.  One such manipulator is 
shown in Figure 5a and its geometrical parameters are listed in Table 1.  It was found that this 
manipulator does not have any parallel singularities inside its workspace for orientations varying 
from -90 to +90 degrees.  The workspace of the manipulator for several orientations is shown in 
Figure 5b. 
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Figure 5 (a) Manipulator geometry  (b) Manipulator workspace for orientations ranging from -90 to +90 

degrees  
 
 

Table 1  Geometric parameters of the singularity-free manipulator shown in Figure 5 
B1x -13.29 B1y -11.25 P1x -5.75 P1y -1.69 l1 3.75 
B2x 11.32 B2y -6.15 P2x 2.16 P2y -2.34 l2 13.05 
B3x -2.92 B3y 8.32 P3x 2.20 P3y 1.80   
 
The optimized manipulators presented in this section are found by minimizing one of the 

following objective functions to evaluate the individuals in the genetic algorithm: 
1wObjFun ⋅+= τα  (28)

 
( ) 21 1 wwObjFun ⋅−+⋅+= βτα  (29)

In the previous equations, α is the error on the workspace, τ is a binary variable representing 
the presence of singularities in the workspace, $ is the GCI, w1 is a penalty, and w2 is a weight 
factor used to give the GCI the same order of magnitude as the error on the workspace.  In this 
work, w1 = 10000 and w2 = 30 were chosen.  The evaluation of the objective functions in the 
genetic algorithm is done according to the following steps: 

S1.  Using the geometrical method, the set of arcs that represent the constant orientation 
workspace of the manipulator is found. 
S2.  The area of the error between the prescribed and actual workspaces (") is computed. 
S3.  The determinant of Jx for a given working mode is evaluated at consecutive points 
located on the arcs that define the actual workspace boundary until a sign change of det(Jx) is 
found.  If no sign change occurs, it is assumed that there are no singularities inside the 
manipulator workspace for this working mode. 
S4.  The previous step is repeated for each of the manipulator’s eight working modes and the 
results are assigned to binary variables kj (kj = 1 if a sign change is found, kj = 0 otherwise). 
S5.  If kj = 0 for at least one value of j (j = 1,2,…,8), the binary variable representing 
singularity avoidance is set to 0 (J = 0).  Otherwise, J = 1. 
S6.  (used only when Eq. (29) is optimized)  The GCI of the manipulator is calculated for each 
of the working modes that have no corresponding singularities inside the workspace.  The 
variable representing dexterity ($) is set to the highest value of the GCI among those obtained 
for different working modes. 
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Both symmetric and non symmetric prescribed workspaces are used in this work.  The areas 
of the symmetric and non symmetric workspaces chosen are 67.98 and 45.75 squared units, 
respectively.  The orientation of the manipulator’s mobile platform is set at N = 0 degrees for all 
optimizations. 

Figure 6 shows the results of an optimization using Eq. (28) for a symmetric prescribed 
workspace.  The geometric and kinematic parameters of this manipulator are listed in Table 2.  
For this manipulator, there is only one acceptable working mode (AWM) with regard to parallel 
singularities (∆5).  It can be observed that the error on the workspace is very small (3% of the area 
of the prescribed workspace). 

The results of an optimization using Eq. (29) as the objective function are presented in Figure 
7 and Table 3.  It can be seen that, for this manipulator, the error between the prescribed and 
actual workspaces is slightly higher.  However, the optimization of the dexterity yields a higher 
GCI.  This compromise between workspace error and manipulator dexterity is a usual occurrence 
in the optimization process.  The optimized working mode (OWM) with regards to dexterity for 
this manipulator is ∆1. 
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Y

Prescribed
workspace

Actual
workspace

 
 

Figure 6  Optimization of manipulator workspace and singularity avoidance (symmetric workspace) 
 

Table 2  Geometric and kinematic parameters :  optimization of manipulator workspace and singularity 
avoidance (symmetric workspace) 

B1x -15.63 B1y -2.18 P1x -9.94 P1y -1.44 l1 4.73 " 1.88
B2x 10.57 B2y -10.82 P2x 5.06 P2y -9.74 l2 6.08 $ 0.29
B3x 2.22 B3y 14.70 P3x 2.20 P3y 5.37  AWM ∆5

 
Results equivalent to those presented above for a symmetric prescribed workspace are also 

obtained for a non symmetric prescribed workspace.  Manipulators optimized using Eqs. (28) and 
(29) are shown in Figures 8 and 9, respectively.  The geometric and kinematic parameters of 
these manipulators are detailed in Tables 4 and 5. 

 



 13

Prescribed
workspace

Actual
workspace

X

Y

 
 

Figure 7  Optimization of manipulator workspace, dexterity and singularity avoidance (symmetric 
workspace) 

 
Table 3  Geometric and kinematic parameters :  optimization of manipulator workspace, dexterity and 

singularity avoidance (symmetric workspace) 
B1x -16.31 B1y -6.00 P1x -5.72 P1y -2.35 L1 4.77 " 4.73
B2x 12.98 B2y -10.89 P2x 3.21 P2y -5.88 L2 11.65 $ 0.55
B3x -0.85 B3y 22.60 P3x -0.27 P3y 7.54  OWM ∆1
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Figure 8  Optimization of manipulator workspace and singularity avoidance (non symmetric workspace) 

 
Table 4  Geometric and kinematic parameters :  optimization of manipulator workspace and singularity 

avoidance (non symmetric workspace) 
B1x -9.24 B1y -9.35 P1x -2.39 P1y -4.99 l1 6.43 " 2.90
B2x 12.28 B2y -11.36 P2x 5.18 P2y -7.24 l2 6.30 $ 0.38
B3x -9.69 B3y 15.26 P3x -2.31 P3y 5.60  AWM ∆5
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Figure 9  Optimization of manipulator workspace, dexterity and singularity avoidance (non symmetric 
workspace) 

 
Table 5  Geometric and kinematic parameters :  optimization of manipulator workspace, dexterity and 

singularity avoidance (non symmetric workspace) 
B1x -13.58 B1y -9.07 P1x -2.61 P1y -4.62 l1 5.29 " 5.88
B2x 13.47 B2y -10.78 P2x 3.93 P2y -4.33 l2 10.72 $ 0.52
B3x -3.03 B3y 16.99 P3x 5.55 P3y 4.05  OWM ∆8

 
In order to gain insight into the consistency of the results generated by the genetic algorithm 

as well as to better compare the different objective functions, box plots of the workspace error as 
well as of the GCI are presented in Figures 10 and 11.  The samples on which these plots are 
based consist of a minimum of 30 results obtained for each of the four optimization types: 
symmetric and non symmetric prescribed workspaces (SW and NSW, respectively) as well as the 
optimization of workspace error (W), dexterity (D) and singularity avoidance (S). 

It can be observed in Figure 10 that the workspace error generated by the genetic algorithm is 
generally consistent for all optimization types.  Furthermore, from Figure 11, the values of the 
GCI obtained when the dexterity is optimized in the objective function are consistently higher 
than when it is not.  In fact, statistical tests confirm this fact with a 99% confidence level for both 
symmetric and non symmetric prescribed workspaces. 
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Figure 10  Box plot of workspace error for each of the optimization types 
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Figure 11  Box plot of GCI for each of the optimization types 
 

 
9. CONCLUSION 

In this work, planar 3-RRR parallel manipulators were optimized using a genetic algorithm 
while considering workspace error, dexterity and singularity avoidance as design criteria.  Results 
were obtained for both symmetric and non symmetric prescribed workspaces.  It was found that 
the genetic algorithm produced generally consistent workspace errors for all optimization types.  
However, the workspace error was compromised slightly when optimizing dexterity.  According 
to the results, it can be stated with a 99% confidence level that the optimization of dexterity 
produces better conditioned manipulators. 

The principle contribution of this work is the development of a design method that is capable 
of avoiding the presence of parallel singularities inside the workspace of a 3-RRR manipulator 
for one or more of its working modes.  It was also shown that some 3-RRR manipulators do not 
have any parallel singularities (for all working modes) inside their workspace for several 
orientations of their mobile platform. 

Finally, it was observed that the physical size of the optimized manipulators was not affected 
by the use of different objective functions in the genetic algorithm.  A possible addition to the 
synthesis method proposed here would be to add a parameter representing the ratio of the 
manipulator size to its workspace area in the genetic algorithm’s objective function with the goal 
of obtaining smaller manipulators. 
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