IDENTIFYING THE 1-DOF-LOSS VELOCITY-DEGENERATE
(SINGULAR) CONFIGURATIONS OF AN 8-JOINT MANIPULATOR

Scott B. Nokleby and Ron P. Podhorodeski
Robotics and Mechanisms Laboratory
Department of Mechanical Engineering, University of Victoria
P. O. Box 3055, Victoria, British Columbia, Canada,V8W 3P6

ABSTRACT

This work presents the determination of the velocity-degenerate (singular) configurations of the Na-
tional Aeronautics and Space Administration (NASA) Advanced Research Manipulator IT (ARMII).
A previously developed reciprocity-based methodology for identifying the 1-DOF (degree-of-freedom)
loss velocity-degenerate configurations of redundant manipulators is successfully applied to the 8-
joint ARMII. Tt is shown that four sets of conditions (one requiring the satisfaction of a single
condition, one requiring the satisfaction of two conditions, and two requiring the satisfaction of
three conditions), defining families of degenerate configurations resulting in a single motion DOF
loss, exist for manipulators having geometries kinematically equivalent to the ARMII. In addi-
tion, reciprocal screws characterizing the lost motion are found for each degenerate configuration.
The presented degeneracy conditions are complete and they correct erroneous results previously
reported in the literature by other researchers. The results also show that partitioning the ma-
trix of unit joint screw-coordinates to identify velocity-degenerate configurations does not work for
redundant spherical-wristed manipulators.

L’ IDENTIFICATION DES CONFIGURATIONS DE DEGENERESCENCES
DES EQUATIONS DE VITESSE (SINGULARITES) DE PERTE D’UN
DEGRE-DE-LIBERTE D’UN MANIPULATEUR A HUIT JOINTS

RESUME

Cet ouvrage présente la détermination des configurations de dégénérescence des équations de vitesse
(singularités) du Advanced Research Manipulator IT (ARMII) de la National Aeronautics and Space
Administration (NASA). Une méthodologie développée antérieurement, basée sur la réciprocité,
dans le but d’identifier les configurations de dégénérescence des équations de vitesse d’une perte
d’un degré-de-liberté est appliquée avec réussite au ARMII & huit joints. Il est démontré que
quatre séries de conditions (une qui exige la réalisation d’une seule condition, une qui exige la
réalisation de deux conditions, et deux qui exigent la réalisation de trois conditions), qui définissent
les familles de configurations dégénéréscentes qui résultent dans la perte d’'un degré-de-liberté,
existent pour les manipulateurs avec une géométrie qui est cinématiquement équivalent & celui de
I’ARMII. De plus, des visseurs réciproques qui charactérisent le mouvement perdu sont trouvés pour
chaque configuration dégénéréscente. Les conditions dégénéréscentes présentées sont complétes et
corrigent des résultats erronés antérieurement annoncés dans la littérature par d’autres chercheurs.
Les résultats démontrent également que la partition de la matrice de coordonnées de 'unité visseur
pour identifier les configurations de dégénérescence des équations de vitesse ne fonctionne pas pour
les manipulateurs redondants a poignet sphérique.



1. INTRODUCTION

The inverse velocity problem of a manipulator, given the desired velocity of the end-effector
what are the joint rates (twist amplitudes) required to achieve a desired end-effector velocity,
can be solved using screws!. For 6-DOF (degree-of-freedom) motion, assuming a non-redundant

manipulator in a non-degenerate configuration, the inverse velocity solution can be expressed as:
0= $]7'v (1)

where @ is the vector of joint rates, [$] is the 6x6 matrix of unit joint screw-coordinates (also
referred to in the literature as the Jacobian matrix), and V is the desired end-effector velocity. In
a velocity-degenerate configuration, a manipulator loses at least 1-DOF of motion capability, i.e.,
the joint screws of the manipulator do not span the 6-system of full spatial motion.

The most common method for determining velocity degeneracies of non-redundant manipulators
is setting the determinant of the matrix of unit joint screw-coordinates to zero (| [$] |= 0) to
determine the degenerate configurations [1-5].

For redundant manipulators, an infinity of possible solutions exist to the inverse kinematic
problem. For a redundant manipulator the matrix of unit joint screw-coordinates is non-square
([$]6xn, where n > 6), therefore, equation (1) cannot be used to solve for the joint rates of a redundant
manipulator. Whitney [6] proposed using the Moore-Penrose generalized (pseudo) inverse of [$]
to solve the inverse velocity problem of redundant serial manipulators. The pseudo-inverse of the
matrix of unit joint screw-coordinates, [$]T, is given by:

817 =18]" (8)8)") @)
The joint rates can then be found from:
6=[5]"V (3)

Numerous other methods have been proposed in the literature to resolve the kinematics of redundant
manipulators.

For a redundant manipulator, singularities of the pseudo inverse of [$] can be examined to resolve
velocity-degenerate configurations of redundant manipulators. Velocity-degenerate configurations
occur when the determinant of the [$][$] portion of [$]T is equal to zero [7]. Although the matrix
formed by [$][$]" is a square matrix, the form of expressions for its elements can be unwieldy.
The resulting expression for |[$][$]T| can be difficult to simplify and analytical solutions to the
velocity-degeneracy problem can be hard to find.

Other methods for dealing with the problem of resolving velocity-degenerate configurations of
redundantly-actuated serial manipulators have been proposed. Litvin and Parenti Castelli [§]
and Litvin et al. [9, 10] used derivatives of displacement functions to form Jacobian matrices of
manipulators and considered singularity of the determinants of the Jacobians to identify special
configurations. The methodology works for both non-redundant and redundant manipulators.

Podhorodeski, Fenton, and Goldenberg [11] and Podhorodeski, Goldenberg, and Fenton [12,
13] applied a decomposition method to identify the degeneracies of redundant manipulators. The
method requires multiple Gram-Schmidt type decompositions to identify all singularities of a re-
dundant manipulator. The proposed method is difficult to apply beyond kinematically-simple
(spherical-wristed) redundant manipulators.

!See Appendix for a review of manipulator kinematics using screws.



Duffy and Crane III [14], Nokleby and Podhorodeski [15], and Podhorodeski, Nokleby, and
Wittchen [16] used 6-joint sub-groups of [$] to determine the velocity-degenerate configurations of
redundant manipulators performing a 6-DOF task. Configurations that cause the determinants of
all possible 6-joint sub-groups to simultaneously equal zero are velocity-degenerate configurations
[17]. This methodology works well for 7-joint manipulators since only seven unique 6-joint sub-
groups exist. For an 8-joint manipulator, 28 6-joint sub-groups exist and for a 9-joint manipulator,
84 6-joint sub-groups exist. It is clear that the methodology does not work well for manipulators
with higher degrees of redundancy due to the large number of conditions that must be checked to
ensure that all the 6-joint sub-group determinants are simultaneously zero.

Kreutz-Delgado, Long, and Seraji [18, 19] used a combination of finding conditions that cause
a vector of cofactors of the Jacobian to be zero and looking for row and column dependencies of
the Jacobian to determine the velocity-degenerate configurations of 7-joint manipulators.

Burdick [20] developed a recursive algorithm that identifies all singular configurations of revolute-
only redundant manipulators. This methodology does not require the formulation of the deter-
minant of [§]. The methodology is based on reciprocity of screws. This is a substantial work,
but it has been reported that implementation of the methodology for the symbolic (analytical)
case rapidly becomes complex and that identification of velocity-degenerate configurations using
numerical results from the algorithm is difficult [21].

Royer, Bidard, and Androit [22] used kinematic geometry to find the velocity-degenerate con-
figurations of a 7-joint anthropomorphic manipulator.

Nokleby and Podhorodeski [23-25] developed a reciprocity-based methodology for finding the
1-DOF-loss velocity-degenerate configurations of kinematically-redundant serial manipulators. A
by-product of the methodology is that a reciprocal screw related to the lost motion DOF for each
degenerate configuration is determined. Nokleby and Podhorodeski [26, 27] extended their 1-DOF-
loss methodology to find multi-DOF-loss velocity-degenerate configurations.

Cheng and Kazerounian [28] determined the singular configurations of the 7-joint anthropomor-
phic manipulator by studying the manipulator geometrically. They state that a singularity will
occur when two revolute joint axes become collinear. This statement is true for non-redundant ma-
nipulators, but is not always true for redundant manipulators. The basis of the author’s analysis is
fundamentally flawed and leads to erroneous statements about the nature of singular configurations
of redundant manipulators.

Dupuis [29] and Dupuis, Papadopoulos, and Hayward [30] developed a singular vector method
for computing the rank-deficiency loci of rectangular Jacobians. This is a reformulation of the
reciprocity-based method of Nokleby and Podhorodeski [23-25] into linear algebra terms. The
authors note that the method has an advantage over the reciprocity-based methodology because,
in addition to dealing with the case of a Jacobian with more columns than rows (i.e., a redundantly-
actuated manipulator), it can handle the case where the Jacobian has more rows than columns.
This latter case concerns under-actuated manipulators, i.e., manipulators that have less than the
six joints required for 6-DOF spatial motion.

In this paper, the identification of the 1-DOF-loss velocity-degenerate configurations of an 8-
joint manipulator, using the reciprocity-based methodology of Nokleby and Podhorodeski [23-25], is
considered. The manipulator being analyzed is the National Aeronautics and Space Administration
(NASA) Advanced Research Manipulator IT (ARMII) [31].

The outline for the remainder of the paper is as follows. In Section 2, the model for the ARMII
is presented. In Section 3, the identification of the 1-DOF-loss velocity-degenerate configurations
of the ARMII is presented. Section 4 is a discussion of the results. The paper finishes with
conclusions.



2. MANIPULATOR MODEL

The ARMII is an 8-joint manipulator with a layout of (RLRLR)®" IR 1(RLRLRLR)*".
The layout of the ARMII is similar to the 7-joint spherical-revolute-spherical manipulator except
the wrist spherical group for the ARMII consists of four joints instead of the three used in the
spherical-revolute-spherical manipulator.

The Denavit and Hartenberg (D&H) parameters [32] for the ARMII using Craig’s frame assign-
ment convention [33] are presented in Table 1. The parameters of Table 1 correspond to the link
transformations:

T = Rotg, , (aj—1) Transs,_, (aj—1) Transg, (d;) Roty, (6;) @

where ;AT is a homogeneous transformation describing the location and orientation of link-frame
Fj with respect to link-frame Fj_1, Rotg, | (aj—1) denotes a rotation about the Xj_1 axis by
aj-1, Transg,_, (aj—1) denotes a translation along the X;_; axis by aj_1, Transz, (d;) denotes a
translation along the z; axis by d;, and Rotz; (0;) denotes a rotation about the z; axis by 0; [33].
Figure 1 shows the zero-displacement configuration of the manipulator.

Table 1: Denavit and Hartenberg Parameters for the ARMII Manipulator

| Fia[oj1 a0 dj 0 |5
Fy 0 0 0 01 Fy
Rz 0 0 6 |FR
FQ —% 0 qg 93 F3
BT 0 0 6 |R
B | =2 0 n 6-%|F
Fy —% 0 0 6+ % Fs
F | I 0 0 6-%2|F
F |2 0 0 6 |F
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Figure 1: Zero-Displacement Configuration of the ARMII Manipulator



Choosing a reference frame to be an inertial frame coincident with Fy of the ARMII allows the
joint screws to be found as [31]:

C284 + Sac3Cy )

C2C4 — 52€354
'ref$1 _ 5283

—s983 (c4g + h)

5253549
sac3g + h (casq + sacsca)
ref$y = { —ssca, s3sa, c3; —cs(cag+h), cssag, —ss3(g+cah) }T (5)
7def$3 :{ S4, C4, 0; 0, 0, 84h !
ref$,=1{0, 0, 1; —h, 0, O
refgs={0, 1, 0; 0, 0, 0}
6=1{

T€f$ Cs, 07 —85; 07 07 0 }T
ref$; = { ssc6, —s6, csce; 0, 0, 0 }T

T
el$s = { —css7 + ssseer, cger, ssst+csser; 0, 0, 0}

where ¢; and s; denote cos(6;) and sin(6;), respectively. The matrix of unit joint screws for the
manipulator is:

relg=" %1 $2 $3 $4 $5 $6 $7 $s | (6)

3. IDENTIFICATION OF VELOCITY-DEGENERATE CONFIGURATIONS

Select $2, $3, 84, $5, $6, and $7 from equation (5) to form [§]syup:
TSl = " [ 82 $3 S1 S5 $6 $7 | (7)

with the redundant joints being $; and $g. Note that the six joints of [$]s,, were chosen such that
they are not inherently linearly dependent. The determinant of [$]s, is:

)Tef[$}8ub = —63sicﬁgh2 (8)

Therefore, if a) s4 = 0, b) ¢3 = 0, or ¢) ¢g = 0, then the six joints comprising [$]s,, define a

degenerate sub-group of screws. Degenerate configurations of the 8-joint arm will include one of

these three conditions. Additional conditions required can be found by enforcing reciprocity of $;

and $g with screws characterizing the lost motion DOF for each of the [$],,;, degenerate conditions.
a) Setting s, = 0 in equation (7) yields:

—S83C4 0 0 0 Cs S5Cq i
0 cg 0 1 0 —sg
ref . C3 O 1 O —S85 C5Cq
[8lsuba = —c3(cag+h) 0O —h 0 O 0 9)
0 0 0 0 O 0
| —s3(g+cah) O 0 0 O 0 |

The reciprocal screw for the six joints comprising [$]s,, with s4 = 0 can be found from inspection
to be:

" Wieeipa ={ 0, 1, 0; 0, 0, 0} (10)



Note that Wecp, is not unique. In a 1-DOF-loss degenerate configuration the joint screws span a
5-system and therefore there is an infinity of possible reciprocal screw quantities. These reciprocal
screw quantities are all scalar multiples of one another, the one of equation (10) being the case of
unit screw-coordinates.

Setting the reciprocal products between W ccip, & $1 and Wiecip, & $g to zero yields:

TefWrecipa ® "/$) = 5983549 =0 (11)

"W pecip, ® "85 =0 (12)

Since s4 = 0, no further conditions are necessary to make W, reciprocal to joints $1, $2, $3,
$4, 85, $6, $7, and $3. Therefore, s, = 0 defines a 1-condition family of degenerate configurations
for the 8-joint manipulator.

b) Setting c3 = 0 in equation (7) yields:

—83C4 S4 0 0 Cs S5C6 i
8384 Cy 0 1 0 —Sg
0 0 1 0 —s5 csc
ref _ 5 5C6
[$]Subb - 0 0 —h 0 0 0 (1?))
0 0 0 0 O 0
| —S3 (g + C4h) sq4h 0 0 0 0 |

The reciprocal screw for the six joints comprising [$]s,, with ¢c3 = 0 can be found from inspection
to be:

refWTecipb = { 07 ]-7 0; 07 07 0 }T (14>

Setting the reciprocal products between Wyecip, & $1 and Wieeip, & $g to zero yields:
TefWTecipb ® 'ref$1 = 5283549 = 0 (15)
refWTecz'pb ® r8f$8 =0 (16)

Thus, if s9 =0 & c3 =0 or ¢c3 = 0 & s4 = 0, Wieeip, s reciprocal to joints $1, $2, $3, $4, $5, $6,
$7, and $5. It was shown in Section 3a that s; = 0 alone results in a degenerate configuration,
therefore, cg3 = 0 & s4 = 0 does not represent a new family of degenerate configurations. However,
sg =0 & c3 = 0 defines a new 2-condition family of degenerate configurations.

¢) Setting ¢g = 0 in equation (7) yields:

—S83C4 S4 0 0 Cx 0
5354 C4 0 1 0 —S6
ref _ C3 0 1 0 —S85 0
[Bsube —c3(cag+h) 0O —h 0 O 0 (17)
C3849 0 0O 0 O 0
| —S3 (g + C4h> s4h 0 0 0 0 |

Let Wyeeip. ={ L, M, N; P, Q, R }T. Setting "/ Wc;p,® "/$; = 0, for j =2 to 7, with
cg = 0 allows the elements of Wiy, to be found as:

"I W eoip, = { €5, DBUAL=I85 g5 s5h, 0, csh }T (18)

€384



Setting the reciprocal products between Wecip, & $1 and Wiecip, & $g to zero yields:

Tefwrecz'pc ® Tef$1 = —$284859 =0 (19>

"W recip. ® "' $s = c3sasgerh =0 (20)

Note that s4 = 0 or so = 0 & c3 = 0 already result in degenerate configurations (see Sections
3a and 3b, respectively) and that c3 = 0, s5 = 0, & cg = 0 causes "¢/ Wi ecip, to collapse into a
Zero screw (Tef W recip. = Ogx1), therefore, these conditions do not define new families of degenerate
configurations. However, if s9 = 0, ¢ =0, & c7 =0 or s5 =0, cg = 0, & ¢7 = 0, Wiecip, is
reciprocal to joints $1, $2, $3, $4, $5, $6, $7, and $s. These sets of conditions define two further
3-condition families of degenerate configurations.

Examining all of the degenerate configurations yields four sets of conditions (one requiring the
satisfaction of a single condition, one requiring the satisfaction of two conditions, and two requiring
the satisfaction of three conditions) defining families of degenerate configurations resulting in a
single motion DOF loss for manipulators having geometries kinematically equivalent to the ARMII.
These degenerate configurations and their respective reciprocal screws can be summarized as:

1) S4 = 0
ref _ ref - . T
Wl - Vv'reczp[1 - { O; 1: 07 07 07 0 }

2) S§9 = 0& C3 = 0
refW2 = TefWTeCZ.pb — { 0, 1, 0; 0, 0, 0 }T
(21)
3) SQZO, 0620, &0720
’r‘efW3 = TefWTec’ipc = { Cs, %7 —855 S5h7 07 C5h }T
4) 8520, 0620, &0720
refWﬁl = TefWTec’ipc = { Cs, Ma —855 S5h7 07 C5h }T

€354

The above results were confirmed using the symbolic math package Maple 6 to determine the rank
of the matrix of unit joint screw-coordinates, "*/[§]. For each set of conditions, the rank of "¢/[§]
was found to be five, i.e., the manipulator had lost 1-DOF of motion capability.

The reciprocal screw quantity, W;, in equation (21) characterizes the lost instantaneous motion
(velocity) DOF for the i*" degenerate configuration. ~Within the degenerate configuration, the
manipulator will not be able to produce a motion that would do work subject to a force spanned
by the reciprocal screw. Feasible motions in the i'" degenerate configuration are defined by the

reciprocal product equation:

Wi ®V feasivie = 0 (22)
where V feqsibie = {wT; vT }}easibl . represents the possible instantaneous motions.
4. DISCUSSION

Williams 1T [31, 34, 35] attempted to derive the velocity-degenerate configurations of the ARMII
by looking at a partitioned Jacobian (matrix of unit joint screw-coordinates). Since the ARMII has
a spherical wrist, Williams II partitioned the main-arm joints (the joints responsible for translation



of the wrist centre) from the spherical-wrist joints (the joints responsible for orientation). The
two partitioned groups of joints were analyzed separately to attempt to determine conditions that
result in velocity degeneracies for the manipulator.

As Lipkin and Duffy [2] show for a non-redundant manipulator with three revolute-joints forming
a spherical group (i.e., intersecting at a common point such as a spherical-wrist centre) that the
terms of the screw-coordinate matrix (Jacobian) can be simplified if an appropriate location is used
for the reference frame origin. In particular, if the location of the frame of reference is selected to
be the intersection point of the three revolute-joint axes, the matrix of unit joint screw-coordinates
takes on the form:

_ [Sm‘m] X [Swrist] X
[$}6X6 B |: [So arm?3j3 03)(33 ’ ] (23)

where it has been assumed that the final three joints form a spherical wrist. In equation (23), the
first three columns are the joint screw-coordinates of the main-arm and the last three columns are
the joint screw-coordinates of the spherical-wrist. The determinant of [$]gyg is:

80 = || o)) Bt )| = ol fsurie (21)
[So a'rm] 03x3

Therefore, for a non-redundant serial manipulator, a degeneracy exists if the main-arms joints go

degenerate (|[Sy grm]| = 0) or if the wrist joints go degenerate (|[$yrist]| = 0).

Williams IT [31, 34, 35] tries to apply the same principle to redundant manipulators with a
spherical-wrist. It should be apparent that this is not possible simply by looking at the matrix of
unit joint screw-coordinates for the ARMII. For the chosen frame of reference, the ARMII matrix
of unit joint screw-coordinates is of the form:

$ g = [Sarm]3x4 [Swm'st]?uxél 925
[ }6 8 [So arm}3x4 03x4 ( )

where the first four columns are the joint screw-coordinates of the main-arm and the last four
columns are the joint screw-coordinates of the spherical-wrist. The matrix of unit joint screw-
coordinates for the ARMII is not square, therefore, no determinant can be taken. Notin% that
the pseudo inverse of the matrix of unit joint screw-coordinates is [$]* = [$]" ([$][$]") ~, the
determinant of [$][$]T can be used to determine velocity-degenerate configurations [7]. The matrix

[$][$]" is of the form:

T _ [Sm‘m] [Swrist] [Sarm]T [So arm]T
[$] [$] a |: [So aTm} 03)(4 :| |: [Swm'st}T O4x3 (26)
[Sm‘m] [Sm‘m}T + [Swristi]‘ [Swm'st]T [Sarm] [So aTm]T :|

[So a'rm] [Sa'rm} [So a'r‘m} [So arm]

Comparing the matrices of equations (23) and (26), the [$][$] matrix does not have the sub-matrix
of zeros that is found in the matrix of unit joint screw-coordinates for the non-redundant spherical-
wristed manipulator. It is this sub-matrix of zeros that allows the partitioning of the main-arm
and wrist joints to allow the determination of velocity-degenerate configurations of non-redundant
spherical-wristed manipulators. It is clear from the form of [$][$]T that looking at conditions that
cause only the main-arm or the wrist to go singular for redundant spherical-wristed manipulators
does not guarantee that the whole manipulator is in a velocity-degenerate configuration.

The degeneracy conditions Williams II [34, 35] found can be summarized as: a) s4 = 0, b)
s9=0& c3=0,¢c) s9=0& s4 =0, and d) ¢¢ =0 & c;7 = 0. Williams II [34] points out that



condition (c) is a subset of (a), i.e., condition (c) is a special case of the more general condition (a).
Therefore, Williams II identified three unique sets of conditions resulting in velocity degeneracies
for the ARMII: i) s4 =0, ii) s =0 & ¢3 = 0, iii) ¢¢ = 0 & ¢; = 0. Conditions (i) and (ii) agree
with the results obtained using the reciprocity-based methodology. Condition (iii) does not agree
with the results obtained using the reciprocity-based methodology. Williams IT [34, 35] claims
that condition (iii) is a degeneracy for the full Jacobian, but this is not correct. It can be shown
that with ¢g = 0 & ¢7 = 0 the Jacobian retains full rank (this was confirmed using Maple 6). The
results of the reciprocity-based methodology show that the condition ¢g = 0 & c¢7 = 0 alone does
not result in a degeneracy, but requires either s3 = 0 or s5 = 0 to be true in addition. The results
show that partitioning the matrix of unit joint screw-coordinates to identify singular configurations
does not work for redundant spherical-wristed manipulators.

5. CONCLUSIONS

A reciprocity-based methodology for identifying the 1-DOF-loss velocity-degenerate (singular)
configurations of redundant manipulators was successfully applied to the 8-joint NASA ARMII
manipulator. It was shown that four sets of conditions (one requiring the satisfaction of a single
condition, one requiring the satisfaction of two conditions, and two requiring the satisfaction of
three conditions) define families of degenerate configurations resulting in a single motion DOF loss
for manipulators having geometries kinematically equivalent to the ARMII. In addition, reciprocal
screws characterizing the lost motion were found for each degenerate configuration. The presented
degeneracy conditions are complete and they correct erroneous results previously reported in the
literature by other researchers.

It was also shown that partitioning the matrix of unit joint screw-coordinates to identify velocity-
degenerate configurations does not work for redundant spherical-wristed manipulators.
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APPENDIX A: MANIPULATOR KINEMATICS USING SCREWS

Scews
A screw (8S) is a line in space having an associated linear pitch. Screws can be represented as:

=211l

where s and s, are the screw-coordinates, 1 and 1, are the Pliicker coordinates of the line, A is an
associated magnitude, and p is the pitch of the screw [5, 36]. The pitch of a screw can be found
from:

S

*So
p =
sl
A screw is said to be a unit or normalized screw (3) if ||s|| = 1 or in the case where s = 03y, if
Isoll =1 15). )
For manipulators, a revolute joint can be represented by a zero-pitch unit screw $,.,= {1"; 1}
and a prismatic joint can be represented by an infinite-pitch unit screw which when normalized to
the oco-pitch gives $ppis= {ngl; lT}T.
The screw-coordinates of the joints of a manipulator can be found from:

refo

Z; 0

refg. J _ 3x1

$] - { Tef/z\, XTBf r. } or = { Tef’z\, } (28>
J J7Pee ) revolute J ) prismatic

th

T

where z; denotes the unit vector of the j' joint axis direction, pe. denotes a point coincident with
the origin of F,.r and attached to the end-effector, and r;_,,.. denotes a vector from a point on
the axis of joint j to the point pee.

Scew Transformations
A screw transformation is defined as:

refoR 0
Ja _ 3x3
:2fb TS - Tefaf) refo 're;aR 're;aR (29)
0a—0b refy, refp

where :z;:R is a 3x3 rotation matrix and "¢/ep,, _,, is a 3x3 cross product skew-symmetric matrix
based on the components of a vector, "/ap, _, =T¢/a {p%a_mb s Ploa—op? Prog—op T from the origin
of Ficr, to the origin of Fy..r,. The cross product skew-symmetric matrix Tefaﬁoa_)ob is defined as:

0 _pzoa—»ob pyoaﬁob
refa ﬁoa—ﬂ)b = pzoa—mb 0 _pwoaﬂob (30)
_pyoa—>ob pxoa—>ob O

Reciprocal Scews

Let the screw quantity A = {aT; allT represent the velocity of a body and the screw quantity

B = {bT; bl 1" represent a wrench acting on the body. If wrench B contributes nothing to the
rate of work being done to the body moving with velocity A, the screw quantities A and B are



said to be reciprocal to one another [36]. Mathematically, the two screws, A and B, are reciprocal
if their reciprocal product is zero:

A®B=a-b,+a,-b=0 (31)
where ® denotes a reciprocal product between two screws.

Velocity Solutions
The end-effector velocity (V) of a manipulator is defined as:

V:{‘:} (32)

where w is the angular velocity and v is the translational velocity. The forward velocity solution
of a serial manipulator, given the joint rates (twist amplitudes) what is the end-effector velocity,
can be described using screws. Letting $; denote the screw-coordinates of joint j allows V to be
determined by:

v;{j}:é}@- (33)

where n is the total number of joints and éj is the joint rate (twist amplitude) of joint j. In matrix
form this can be expressed as:

V:{ «“ }:[3}9 (34)

v
where [$] = $1 $2 --- §, | is the matrix of unit joint screw-coordinates commonly referred to
as the Jacobian matrix and 6 = [01 6y --- 0, ]" is the vector of joint rates.

For 6-DOF (degree-of-freedom) motion, assuming a non—velocity-degenerate and non-redundant
manipulator (i.e., n = 6), the inverse velocity solution can be expressed as:

6=1[3"1v (35)

Force Solutions
The wrench (F) applied by the end-effector of a manipulator is defined as:

F:{;} (36)

where f is the force applied and m is the moment applied. The inverse static force problem of a
serial manipulator, given the wrench being applied by the end-effector what are the joint torques
(or forces for prismatic joints), can be solved using conservation of power (power in equals power
out):

=y ={fT;mT}{ v } — FT((A] V) (37)

where T is a vector of joint torques and forces and the matrix [A] is an interchange operator that
transforms screws between axis-coordinate order to ray-coordinate order and is defined as:

O3x3  Isx3
Al = 38
(4] [ Isx3  Osxs } (38)



Substituting the forward velocity solution V = [$]@ into equation (37) yields:
To=F' [A][8)0
Equation (39) is true for all §, therefore:
TI=FT[A][$]
Transposing both sides of equation (40) yields the inverse static force problem:
T =8 [A]F

where the fact that [A]" = [A] has been utilized.

The forward static force solution for a non-redundant manipulator can be expressed as:

where the fact that [A]"} = [A] has been utilized.





