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In this paper a combination of geometric and numer-
ical methods is used to combine type and approximate
dimensional synthesis of planar four-bar mechanisms
for rigid body guidance. The developed algorithm sizes
link lengths, locates joint axes, and decides between
RR- and PR-dyads that, when combined, guides a
rigid body through the best approximation of n spec-
ified poses (positions and orientations), where n � 5.
No initial guesses of type or dimension are required.
The synthesis of a planar four-bar mechanism that

can guide a rigid-body exactly through five finitely sep-
arated poses is known as the five-position Burmester
problem [1]. Five poses define a finite number of four-
bar mechanisms. When n � 5 the system of synthe-
sis equations is overconstrained, and in general no ex-
act solution exists. The problem then is to find a four-
bar mechanism that can guide a rigid-body through the
n poses with the least amount of error. Furthermore,
dimensional synthesis for rigid body guidance gener-
ally assumes a mechanism type: i.e., planar 4R; slider-
crank; crank-slider; trammel, etc. This method gener-
alizes approximate mechanism synthesis by integrating
type and dimensional synthesis.
An equation of a line or circle can be expressed:
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where x and y are the Cartesian coordinates of points
on a circle or line, and the Ki define the geometry [2].
For a circle,
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K1 = �Xc, (2)
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K3 = K2
1 + K2

2 � r2,

defines a circle of radius r centred at (Xc, Yc). For a
line,
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K3 = x sin#� y cos #,

defines a linear range of points (x, y) that make an an-
gle # with the positive x-axis. Three points are neces-
sary to define a circle, and two points for a line. For
n points, where n is greater than three for a circle and
two for a line, the system becomes overconstrained, and
a least squares approximation is necessary to determine
the best fit. To set up the problem, the row vector on the
left hand side of Equation (1) becomes an n⇥ 4matrix.
The problem is solved using singular value decomposi-
tion.
A variant of singular value decomposition (SVD)

factors any givenm⇥ n matrix C into

Cm⇥n = Um⇥mSm⇥nVT
n⇥n, (4)

where U and V are orthogonal and S is an diagonal ma-
trix containing the singular values of C in descending
order. For a least squares approximation of overcon-
trained systems, the last column of V is the best ap-
proximation ofK such that CK = 0. TheK parameter
vector defining the geometry is then any scalar multi-
ple of that column of V. For convenience, the solution
vector is normalized by the first parameter, in order to
match the solution with the parameters defining a circle,
as given in Equation (2).
If the geometry of the identified circle appears to

be inordinately large, the geometry may instead be de-
termined using Equation (3) to define a line, as a line
segment is analogous to a circular arc of infinite radius
centred at infinity. Fitting data points to circles and lines
is the basis of integrated type and approximate dimen-
sional synthesis using this method.
Suppose that n planar poses of a rigid body are to

be approximated, such that n > 5. Suppose also that
the linkage shown in Figure 1 best approximates the
rigid body motion defined by the n poses. For the link-
age shown, the motion of reference frame E defines the
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Figure 1: A linkage that best approximates n > 5
poses.

rigid body motion with respect to the grounded coor-
dinate frame ⌃. Frame E is related to frame ⌃ by a
translation of (a, b) and a rotation of ✓. The points of
the rigid body in frame ⌃ can be found by transform-
ing the same points in frame E, which are known to be
constant. The transformation is
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where (x⌃, y⌃) is a point in frame ⌃, (xE , yE) is the
same point frame E, and (a, b) and ✓ define the trans-
formation from frame ⌃ to frame E. For this method,
we are interested in determining the locations of joints
M1 and M2. In frame E, the coordinate system that
moves with the coupler, the positions of the joints are
constant. However, in frame ⌃, joint M1 is bound to a
circle, and joint M2 to a line. If we have n positions
ofM1 andM2 in ⌃, the geometry of the circle and line
may be found by singular value decomposition.
In order to determine the positions of the joints in

⌃, it is first necessary to find the positions of the joints
in E, as the two are related by Equation (5). A property
of C in Equation (1) is that it approximates either a line
or circle. The more linearly dependent its rows are with
one another, the closer it approximates a line or circle.
Therefore, one can choose values of (x, y) to make the
rows of C the most linearly dependent, thus making C
the most ill-conditioned. The problem then becomes a
2-dimensional search.
The conditioning of a matrix can be measured by the

ratio of its largest and smallest singular values, which is
called the condition number .
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A more convenient number to use is the inverse of the
condition number �, with 0  �  1, because it is
bounded in both directions. An ill-conditioned matrix
has � ⇡ 0. Also, the closer C is to being singular, the
closer the K parameters are to defining an exact circle
or line. Therefore, the goal is to find x and y such that
� is minimized.
The Nelder-Mead polytope algorithm may be used

for this minimization [3]. Since this algorithm needs
as input an initial guess of the parameters it is search-
ing for, � or  may be plotted in terms of x and y first,
and approximate values are chosen that minimize �. At
least two minima are required to obtain a planar four-
bar mechanism, as each minimum corresponds to a sin-
gle dyad. The Nelder-Mead algorithm is then fed these
parameters as inputs, and determines the values of x
and y that give the smallest values of �.
Once the values of x and y have been determined,

the set of values of x⌃ and y⌃ can then be solved for.
The K parameters may then be found using singular
value decomposition. The distinction between RR and
PR dyads is found by determining whether the result-
ing K parameters better describe a circle or line. A re-
sulting circle defines an RR dyad, while a line defines
a PR dyad. If using Equation (2) on the K parame-
ters defines a circle having geometry several orders of
magnitude greater than the poses, it is recalculated us-
ing Equation (3) to define a line instead. In this case, it
is defined as a PR, rather than an RR.
This method has been verified by several means. It

has been tested using rigid-body motion of known pla-
nar four-bar mechanisms of all types, with and without
induced noise. It has also been tested with rigid-body
motion that cannot be reproduced by planar four-bar
mechanisms. Both types of testing reveal the robust-
ness of the method to noise, and show its ability to syn-
thesize mechanisms that approximate motion no planar
four-bar mechanism could replicate exactly.
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