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ABSTRACT

We propose a generalized transmission index for spatial mechanisms, based on the virtual
coe±cient between the transmission wrench screw and the output twist screw. Compared
with other indices, this index is well defined in any case and able to evaluate the force
transmission quality more precisely. We apply this index to mechanisms with higher pairs
and show that the pressure angle is a special case of our index.

Évaluation de la transmission des forces dans les mécanismes spatiaux

à paires cinématiques supérieures

RÉSUMÉ

Nous proposons un indice de transmission gńéralisé pour les mécanismes spatiaux, basé sur le
coe±cient virtuel entre le torseur de transmission et le visseur cinématique de l’élément en-
trâıné. Le nouvel indice est défini sans ambigüité dans tous les cas et permet d’évaluer
la qualité de transmission des forces plus précisément que les indices connus. L’indice
est appliqué à des mécanismes comportant de couples cinématiques supérieures, tout en
démontrant que l’angle de pression n’est qu’un cas spécial de notre indice.

1 Introduction

In the design of a mechanism for a specific motion transmission, the quality of force trans-
mission is a key issue. The transmission angle was introduced by Alt [1], and developed by
Hain [2] for planar linkages, while the pressure angle was proposed by J.V. Poncelet for cam
transmissions [3]. However, these indices are not suitable for some novel mechanisms such as
elliptical gears, general spatial gears, and speed reducers based on cam-roller-followers [4],
as well as some traditional mechanisms such as indexing mechanisms.
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Here, we briefly recall the indices available for spatial mechanisms. The virtual coe±-
cient, introduced by Ball [5], was used as a transmission factor by Yuan, Freudenstein, and
Woo for spatial mechanisms [6], the value of this factor varying from °1 to +1. Suther-
land and Roth introduced the transmission index (TI), a normalized form of the transmission
factor [7], which is a mile stone. Nevertheless, the TI is undefined in some cases and not
applicable to mechanisms with higher pairs. Moreover, the maximum used to normalize the
virtual coe±cient is not a constant in general, which may result in the misleading infor-
mation of the transmission quality. Tsai and Lee developed a new TI, the transmissivity
index, which can be defined in any case by constructing a coordinate frame originated at the
physical center of the floating joint on the output link [8]. However, the maximum developed
here is neither a constant.

We propose here a generalized transmission index (GTI). The GTI is well-defined in any
case, able to represent the transmission performance precisely, and applicable to mechanisms
with higher pairs. We also derive the applicable range of the pressure angle. Moreover,
applications to mechanisms with higher pairs are given.

2 Virtual Coe±cient and Reciprocity

In general, a screw can be represented in dual-number form as

ŝ = e + ≤m

where the primal part e is the unit vector in the direction of the screw axis, the dual part
m being the moment of the screw with respect to the origin, while ≤ is the dual unity, which
is defined such that

≤ 6= 0, ≤2 = 0

Considering one arbitrary point Q, of position vector q on the screw axis, we have

m = q£ e + pe (1)

with p defined as the pitch of the screw, namely,

p = e
T
m

Given two screws ŝ1 and ŝ2, their dot product is given by

ŝ
T
1 ŝ2 = e

T
1 e2 + ≤(eT

1 m2 + m
T
1 e2) (2)

The dual part of the right-hand side in eq. (2) is the virtual coe±cient, !̃12, between these two
screws [9]. Considering eq. (1) and introducing two points Q1 and Q2, of position vectors
q1 and q2, on each of the two screw axes, correspondingly, the virtual coe±cient can be
expressed as

!̃12 = e
T
1 m2 + m

T
1 e2 (3a)

= (p1 + p2)e
T
1 e2 + (q1 ° q2)

T (e1 £ e2)

= (p1 + p2) cos #° d sin # (3b)
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Figure 1: The characteristic point on a spatial output link

where d is the distance from ŝ2 to ŝ1 and # is the angle from ŝ2 to ŝ1 in the direction of
a right-handed screw moving along d. Equation (3b) gives a slightly diÆerent form of the
virtual coe±cient when compared with Ball’s definition [5], which is one-half that given
above. However, this diÆerence does not aÆect the ensuing derivations.

Considering a wrench represented by F ŝ1 and a twist by !ŝ2, the power developed by
the wrench on the body moving with the foregoing twist is F!!̃12. Therefore, the bigger the
virtual coe±cient, the larger the said power, and the better the force transmission. In other
words, a “smaller” wrench is required to transmit the same power to the output link in the
presence of a higher virtual coe±cient.

When the virtual coe±cient vanishes, the two screws are said to be reciprocal to each
other, i.e.,

e
T
1 m2 + m

T
1 e2 = 0

It is well known that the constraint wrench acting on a floating lower pair is reciprocal
to the feasible twist allowed by this pair [5].

3 Transmission Index

3.1 Transmission Wrench Screw and Transmission Index

The prime function of mechanisms is to transmit motion from the input joint to the output
joint. As a result, the load applied at the output joint is transmitted to the input joint. The
internal wrench arising because of the transmission is called the transmission wrench. Since
the magnitude of the load is not necessary to evaluate the quality of a transmission, we focus
only on the transmission wrench screw (TWS).

According to eq. (3), the virtual coe±cient between a TWS ŝw and an output twist

screw (OTS) ŝt is given by

!̃wt = (pw + pt) cos #° d sin # (4)

where pw and pt are the pitches of ŝw and ŝt, respectively, while d is the distance from ŝt to
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ŝw and # is the angle from ŝt to ŝw in the direction of a right-handed screw moving along d,
as illustrated in Fig. 1

In order to obtain a finite, dimensionless index, the TI was defined in [7] as

TI =
|!̃wt|
|!̃wt|max

Both the transmissivity proposed in [8] and the GTI developed here follow this defi-
nition. The only diÆerences among the three indices lies in the definition of the maximum
value of the virtual coe±cient.

3.2 Characteristic Point and Maximum Virtual Coe±cient

Sutherland and Roth introduced the characteristic point to find the putative maximum value
of the virtual coe±cient. This point is defined as the point C on the TWS axis closest to the
axis of the feasible twist screw (FTS) ŝm of the floating joint on the output link, as shown
in Fig. 1 [7]. In consequence, the characteristic length Ω was defined as the distance from
the characteristic point to the OTS. Among all possible TWSs with a constant pitch pw and
passing through C for a given OTS, the maximum virtual coe±cient is given by

|!̃wt|max =
q

(pw + pt)2 + Ω2 (5)

where pw and pt are the pitches of the TWS and the OTS, respectively, and Ω is the charac-
teristic length.

However, the definition of the characteristic point encounters some problems: (1) it is
undefined if the axes of the TWS and the FTS are parallel; (2) the axis of the FTS of the
floating joint is not defined if the joint is prismatic (P), spherical (S) or planar (F); and (3)
this definition cannot be applied to a floating higher pair. Furthermore, since pw and Ω are
not constant in general, the TI cannot match the virtual coe±cient.

In trying to solve the above problems, Tsai and Lee defined the transmissivity, by
defining the maximum of the virtual coe±cient as [8]

|!̃wt|max = kewkkmtk+ kmwkketk = kmtk+ kmwk (6)

where ew and et are unit vectors. The moments are computed with respect to the physical
center of the floating joint on the output link. Nevertheless, the maximum given by eq. (6)
is still local, so that the transmissivity cannot match the virtual coe±cient.

Here, we give our definition based on the maximum given by eq. (5). Before doing this,
we describe the roles of the characteristic point C and length Ω defined by Sutherland and
Roth.

According to eq. (4), we have

!̃wt =
q

(pw + pt)2 + d2(cos Æ cos #° sin Æ sin #)

=
q

(pw + pt)2 + d2 cos(Æ + #)

∑
q

(pw + pt)2 + d2 (7)
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Figure 2: The characteristic point on a spatial output link

where

cos Æ =
pw + ptq

(pw + pt)2 + d2
sin Æ =

d
q

(pw + pt)2 + d2

Comparing eq. (7) with eq. (5), we must have |d| < Ω. Since |d| measures the distance
between the axes of the TWS and the OTS, it is reasonable to define Ω as the distance
between the OTS axis and a point on the TWS axis, which is the characteristic point C.
Notice that Ω is a length characterizing the size of the mechanism at hand. On the other
hand, the output link is physically connected to the output joint (the OTS) and bears the
load directly. Hence, Ω can simply characterize the length of the output link. For this
purpose, the point C must be chosen as the point on the TWS axis closest to the physical

floating joint on the output link.
By representing the floating joint on the output link as a screw, Sutherland and Roth

encountered the problems we have mentioned. Moreover, Sutherland and Roth’s charac-
teristic length may be far from the actual size of a mechanism, and hence, may yield an
unreasonable TI. Therefore, we apply the point representation of the floating joint here; the
floating joint on the output link is represented as the point of application A of the wrench
transmitted, as shown in Fig. 2; this point is defined as the centroid of the contact region in
the physical joint. More specifically, the point A of a R, H or C joint is the mid-point of the
contact line segment on its axis; for a S joint, the point A is the sphere center; for a P or F
joint, the point A is the geometric center of the physical contact area.

Then, we define the characteristic point as the point on the TWS closest to point A.
Consequently, the characteristic point and the characteristic length Ω are uniquely defined,
even if the two axes of the TWS and the FTS are parallel, or the floating joint is a P, S, F,
or a higher pair. Similar to eq. (5), we define the global maximum as

|!̃wt|max = max
x

{
q

(pw + pt)2 + Ω2}

where x is the output displacement, i.e., the output rotation angle if the output joint is R or
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H; or the output translation length if the output joint is P. Therefore, the GTI is given by

GTI =
|(pw + pt) cos #° d sin #|
maxx{

q
(pw + pt)2 + Ω2}

(8)

which can match the virtual coe±cient exactly.
If one of the pitches of the TWS and the OTS is infinite, we have

GTI = lim
pt or pw!1

|(pw + pt) cos #° d sin #|
maxx{

q
(pw + pt)2 + Ω2}

= | cos µ|

Furthermore, we have

Theorem 3.1 The virtual coe±cient and the GTI vanish if the pitches of both the TWS

and the OTS are infinite.

The physical meaning of the theorem is apparent: A moment develops zero power on
a rigid body undergoing a pure translation. Hence, the GTI vanishes.

4 GTI for Mechanisms with Higher Pairs

Since a higher pair usually can transmit only pushing force, the TWS degenerates into the
transmission force line (TFL), which implies pw = 0. By removing the absolute value of the
numerator in eq. (8), we have

GTI =
pt cos #° d sin #

q
p2

t + Ω2
max

Hence, the GTI varies from °1 to +1 and can indicate whether the TFL delivers positive or
negative power.

According to our definition, the characteristic point C is coincident with the point of
application A in a higher pair on the output link. More precisely, A is the mid-point of the
contact line segment of the higher pair.

4.1 GTI and Pressure Angle

The pressure angle µ is defined as the angle between the direction of the transmission force
and the direction of the velocity of the contact point, as pertaining to the driven element
[4, 10]. We now show that the pressure angle is a special case of the GTI and provide the
applicable range of the pressure angle.

If the output joint is a revolute pair, as shown in Fig. 3(a), pt vanishes. Hence,

GTI =
°d sin #

Ωmax
=

Ω cos µ

Ωmax
(9)

the GTI becoming cos µ when Ω is constant.
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(a) (b)

Figure 3: The transmission force line with respect to (a) a revolute output joint; (b) a
prismatic output joint

Figure 4: The characteristic point on a spatial cam transmission

If the output joint is prismatic, as shown in Fig. 3(b), then pt !1, i.e.,

GTI = lim
pt!1

pt cos µ° d sin µ
q

p2
t + Ω2

max

= cos µ

If the output joint is a screw pair, then the GTI is no longer proportional to cos µ.
Therefore, the pressure angle is applicable to a mechanism with a higher pair only if (i) the
output joint is prismatic, or (ii) it is revolute and the characteristic length is constant.

We will illustrate the application of the GTI in some typical mechanisms with a revolute
output joint, by application of eq. (9).

4.2 Cam-Follower Mechanisms

Since the cam-follower coupling is a higher pair, pertaining to the output link in this three-
link mechanism, the characteristic point C is the mid-point of the contact line segment, as
shown in Fig. 4, where the follower is ignored. The transmission force line at point C is
determined by the contact surface, and hence, the GTI can be readily obtained by eq. (9).
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Figure 5: The pitch and contact profiles on a unit sphere

4.3 Cam-Roller-Follower Mechanisms

Although general spatial cam-roller-follower mechanisms are synthesized in [11], the axially
symmetric, hyperbolic roller must be coupled via a C pair onto the follower in general.
Hence, such mechanism is not practical because a C pair cannot bear any axial load while
the cone contact surface between the cam and the roller yields axial force component. Only
spherical and planar mechanisms do not require rollers translating along their axes during
transmission, and hence, C pairs are replaced with R pairs in their cases.

4.3.1 Planar Case

There are two operations: the direct operation and the inverse operation. In the former, the
cam drives the roller-follower; in the latter, the roller-follower drives the cam. Therefore, the
characteristic point C in direct operation is the pitch point, the center of the roller according
to its definition, while the point C in inverse operation is the contact point on the cam.

The transmission force line can be determined equivalently by either the pitch profile
of the cam at the pitch point or the cam profile at the contact point. Then, the GTI will be
computed by eq. (9).

4.3.2 Spherical Case

We describe the motion of a spherical mechanism as occurring on the unit sphere. The
characteristic point C in direct operation is the pitch point of the cam, i.e., the intersection
point between the roller-bearing axis and the unit sphere, while the point C in inverse
operation is the contact point of the cam, the intersection point between the contact line
and the unit sphere.

The transmission force line n̂c is determined by the cam profile at the contact point,
as shown in Fig. 5. However, engineers use the pitch profile of the cam to compute the
transmission force line n̂p because the pitch profile is simpler to manipulate than the cam
profile [11]. Although the transmission force lines obtained using the two profiles are diÆerent,
we have the theorem below.
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Figure 6: A spherical cam-roller-follower mechanism

Theorem 4.1 The virtual coe±cient between the OTS and the unit normal to the pitch

profile and the one between the OTS and the unit normal to the cam profile are the same,

when describing the motion of a spherical mechanism on the unit sphere.

Proof : Let us set the center of a spherical mechanism as the reference point. We have

mt = 0

According to eq. (3a), the virtual coe±cient between the TWS and OTS is given by

!̃wt = e
T
t mw (10)

Notice that the unit normal to the cam profile and the unit normal to the pitch profile are
tangent to the same great circle, as shown in Fig. 5. Therefore, both normals yield the same
moment, m̂c or m̂p with respect to the reference point. According to eq. (10), the virtual
coe±cients obtained by the two unit normals are the same.

4.4 Gear Mechanisms

Although gear pairs are special cases of cam-follower pairs, they are usually studied as friction
wheels. Therefore, we choose the mid-point of the pitch line segment in a gear pair as the
characteristic point. Determining the TFL by the profile of the tooth, we can readily obtain
the GTI from eq. (9).

5 Example: A Spherical Cam-Roller-Follower Mecha-

nism

A spherical cam-follower mechanism is shown in Fig. 6, with design parameters given below:

Æ1 = 90±; Æ3 = 70±; Æ4 = 8±; N = 3
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where Æ1 is the angle between the axes of rotation of the cam and the follower; Æ3 is the
angle between the axes of the follower and the roller; Æ4 is the half angle of the cone surface
of the roller; and N is the number of rollers on the follower.

The cam profile is given by [4]

ec = [°h̃1,°h̃2, k̃1 ]T

where

h̃1 = k̃3 sin √ ° sin ¥ sin ± cos √

h̃2 = k̃3 cos √ + sin ¥ sin ± sin √

k̃1 = cos #2 cos(¥)° sin #2 sin ¥ cos ±

k̃3 = sin #2 cos ¥ + cos #2 sin ¥ cos ±

¥ = #3 ° Æ4

#3 = arctan

q
A2

1 + A2
2

B1

± = arctan
A3

B2

A1 = cos(Æ1 ° #2) cos ¡ sin Æ3 + cos Æ3 sin(Æ1 ° #2)

A2 = sin Æ3 sin ¡

B1 = cos Æ3 cos(Æ1 ° #2)° cos ¡ sin Æ3 sin(Æ1 ° #2)

A3 = sin Æ3 sin ¡

B2 = sin Æ3 cos(Æ1 ° #2) cos ¡ + cos Æ3 sin(Æ1 ° #2)

#2 = arctan
¡0 sin Æ1

¡0 cos Æ1 ° 1
h1 = k3 sin √ ° sin Æ3 sin ¡ cos √

h2 = k3 cos √ + sin Æ3 sin ¡ sin √

k1 = cos Æ1 cos Æ3 ° sin Æ1 sin Æ3 cos ¡

k3 = sin Æ1 cos Æ3 + cos Æ1 sin Æ3 cos ¡

¡ = °º(1° 1/N)° √/N

with √ and ¡ being the input and output angles, respectively.
Although Sutherland and Roth did not define the characteristic point for a mechanisms

with a higher pair, we can use our characteristic point to compute the TI. Here, we consider
the inverse case. The virtual coe±cient is displayed in Fig. 7(a), its maximums defined in
[7], [8] and this paper shown in Fig. 7(b). Obviously, only the maximum defined here is
a constant. The GTI, Sutherland and Roth’s TI, and Tsai and Lee’s transmissivity are
displayed in Fig. 8, where the TI and the transmissivity are symmetric. Notice that only
the GTI matches the virtual coe±cient exactly.

6 Conclusions

We proposed the GTI for spatial mechanisms, which is well-defined in any case. The GTI for
spatial mechanisms with higher pairs varies from °1 to +1, which indicates whether the TFL
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(a) (b)

Figure 7: (a) the virtual coe±cient; and (b) the maximum of the virtual coe±cient of the
GTI, the TI and the transmissivity in the inverse operation of the spherical cam and roller-
follower mechanism

Figure 8: The TI, the GTI and the transmissivity in the inverse operation of the spherical
cam and roller-follower mechanism

delivers positive or negative power. We also derived the applicable range of the the pressure
angle in a mechanism with a higher pair. Furthermore, by applying dual-number algebra,
the virtual coe±cient can be formulated concisely, its computation being straightforward.
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