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Abstract 

The complex dynamical systems, which are difficult to be mathematically modelled, can be described by 

a fuzzy model. This article attempts to improve and to address the problems concerning the systematic 

fuzzy-logic modelling of multi-input-multi-output (MIMO) systems, by introducing the following three 

concepts. 1) A generalized and parameterized reasoning mechanism constructed based on the weighted 

sum of the defuzzified output value of each individual rule. Then the crisp outputs of the fuzzy model can 

be directly calculated from the crisp inputs using the parameterized reasoning mechanism. This reasoning 

mechanism is suitable for online learning and real-time control applications. 2) A gradient-descent based 

parameter adjustment to tune the parameters of reasoning mechanism (which are equal to the number of 

rules) instead of the existing heuristic complex parameter identification in the literature. 3) An improved 

method to select the main system input from all input candidates in the presence of singularity. The 

proposed systematic method of fuzzy modelling has the advantages of simplicity, flexibility, and high 

accuracy. The two example data, which have been widely used in the textbooks and literature as 

benchmark, are used to evaluate the performance of the proposed method.  
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1. Introduction  
Majority of the systems used in the advanced space technologies and manufacturing industries such as 
aircrafts, satellites, robots, computer-controlled machines, etc., are complex systems, for which accurate 
mathematical model cannot be derived or is very difficult to be derived. Therefore, the model-based 
control strategies, which provide stability and tracking in the presence of large environmental and system 
uncertainties, cannot be applied. As an attempt to analyze the complex systems and to deal with 
uncertainties, in 1973 Zadeh [1] proposed a new approach, which was based on the human thinking 
method. Later on in 1975 based on Zadeh's paper, Mamdani [2] built a controller for a steam engine and 
boiler combination by synthesizing a set of linguistic expressions in the form of IF-THEN rules as 
follows:  

IF (system state) THEN (control action) 
In Mamdani’s controller the knowledge of the system state (the IF part) and the set of actions (the THEN 
part) are obtained from the experienced human operators. A general type of fuzzy IF-THEN rule that is 
sometimes known as Mamdani fuzzy rule (model) for Multi-Input-Multi-Output (MIMO) systems can be 
written as: 
                1 1 2 2 1 1isIF AND is AND ... AND is  THEN is AND ... AND isr r n nx A x A x A y B y B           (1) 
where 1x , …, rx  are the system inputs, 1A , ..., rA and 1B , …, nB are the fuzzy sets associated to each input 
and output respectively, and 1y , …, ny  are the system outputs. Generally speaking, fuzzy modelling 
consists of building two essential components [4]: 1) a knowledge-base consisting of a set of linguistic 
rules, and 2) a reasoning mechanism, i.e., the inference procedure upon the rules and given facts to derive 
a reasonable output or conclusion. For both components, two approaches can be recognized in the 
literature. 
 In the traditional approach, it is assumed that knowledge is available or can be obtained from the 
experienced human operators. Fuzzy models (controllers) of systems derived from expert knowledge 
were successful especially in cases where systems were controlled well by human operators. Over time, it 
turned out that the expert knowledge is neither always available for complex systems nor sufficient to 
describe the highly nonlinear behavior of the systems under investigation. Therefore, the second direction 
of fuzzy modelling was adopted from the classical system theory, which is based on the use of traditional 
system identification methods to build fuzzy models. In this approach, both the reasoning mechanism and 
the rule set can be treated as the identifiable terms of model, and therefore, the fuzzy model can be built 
by system identification using the input-output data. 
Fuzzy model identification problem was first considered by Tong [5]. He proposed a logical examination 
method to construct the linguistic models for dynamical systems. In 1984, Pedrycz [6] proposed a new 
composition rule and the corresponding fuzzy systems identification algorithm. In 1985, Takagi-Sugeno 
[3] proposed a new type of fuzzy model (TS model) with linear functional consequent. They identified the 
parameters of the consequent part using the standard least-square method, but the structure of premises of 
the rules was determined more heuristically through the experience and iterative fuzzy partitioning of the 
input space. For the automated identification, in 1984 Pedrycz [7] and in 1990 Baumann et al. [8], applied 
the fuzzy c-means (FCM) clustering to partition the input and output space to resolve the iterative fuzzy 
partitioning, which was an important part, concerning the identification of fuzzy models. Perhaps the 
most remarkable paper, from the systematic identification and clustering point of view to construct the 
fuzzy model, is Sugeno-Yasukawa’s 1993 paper [9]. In this paper the authors proposed a systematic 
approach for the rule generation, main inputs selection, membership assignment to output and input data, 
and identification of parameters of rules. A partly modified version of the ordinary reasoning method was 
used to calculate the final output. Although the method did not produce a good performance, it showed a 
great potential for the systematic fuzzy modelling, using the output data clustering and projection of the 
clustered output data onto all input axes separately.  Later on in 1998, Emami et al. [10] proposed a 



 3

systematic methodology to build fuzzy models from the input-output data, and numerous interesting 
results were obtained. The reasoning problem was considered as an identifiable subject in [10] and a 
unified parameterized reasoning formulation was proposed. This approach, however, involves nonlinear 
programming and constrained parameter optimization, and is computationally cumbersome. In the 
literature, the parameters of the input-output membership functions are also tuned based on the trial and 
error methods and there are no analytical bases for that. However, the complexities introduced by some of 
the approaches challenge the practical applications of those approaches for the problems with high 
dimensionality (e.g., the main input selection method in [9] and the constrained parameter optimization to 
obtain the reasoning mechanism parameters in [10]), while the objective of the fuzzy modelling is to 
characterize the complex relations with simple fuzzy relations [1].  
This paper aims to address the aforementioned problems, and improve and simplify the systematic fuzzy 
logic modelling without sacrifying the performance. The proposed methodology uses an improved fuzzy 
c-means clustering technique and projection method to build the fuzzy rules, and a simple parameterized 
reasoning mechanism to calculate the model output. The proposed parameterized reasoning mechanism is 
constructed based on the weighted sum of the defuzzified output value of each individual rule. Then, the 
crisp outputs of the fuzzy model can be directly calculated from the crisp inputs. The gradient descent 
based learning method can be used to obtain the weights of the rules. It should be noted that these weights 
are different from the firing strength of the rule that sometimes in the literature is referred to as the weight 
of a rule. The proposed reasoning mechanism is convenient for the online learning and real-time control 
applications and can also be incorporated with neural networks to take the advantage of their learning 
technique. The validity of the proposed approach will be illustrated through two examples. The remainder 
of this article is organized as follows: Section 2 presents the architecture of the fuzzy modelling 
procedure. Section 3 describes the structure identification using the FCM algorithm and its bottlenecks. 
Section 4 presents the parameterized reasoning method and its tuning. Section 5 explains the parameter 
identification problem. Systematic procedure to be followed for fuzzy modelling is the subject of Section 
6. Section 7 presents the numerical simulation results, and Section 8 concludes the article.    
                                                                                
2.  Architecture of Fuzzy Modelling Procedure 
A multi-input-multi-output system with multiple independent outputs can be considered as a set of multi-
input-single-output (MISO) system (e.g., in the inverse dynamic problem, the torque of each individual 
joint of a manipulator is a function of position, velocity and acceleration of that joint and the other joints). 
Consequently, the general rule structure for a MISO system can be written in the form of equation (2), 
which will be used throughout this study.  
                              1 1 2 2 1is: IF AND is AND ... AND is  THEN isi i i i i

r rR x A x A x A y B                             (2) 
where Ri is the i-th rule (i = 1, …, n); x1, …, xr are the main input variables; i

jA  (j = 1, …,r) are the fuzzy 
sets associated with the r input variables; and Bi represents the output membership function of rule i. A 
fuzzy model of the MISO system, which is a set of n rules, can be built using the input-output data with 
the following two main steps: 1) Structure identification which consists of rule generation via FCM 
clustering algorithm, main input selection, and input and output membership assignment; 2) Parameter 
identification which consists of identification of the optimum values of the parameters of the FCM 
clustering algorithm and the parameters of the reasoning mechanism in this article. Structure 
identification and parameter identification will be discussed in detail using the following examples to 
clarify the discussion and illustrate the concepts. 
 1) The first example is a nonlinear static system introduced in [9] and [10] with two input variables, x1 
and x2, and a single output, y, as follows; 2 1.5 2

1 2(1 )y = + x + x− − , 1 21 5x , xd d , 50 input-output data, two 
main inputs, and two dummy inputs (introduced to evaluate the main input selection algorithm). 
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2) The second example is a famous gas furnace data of Box and Jenkins, appeared also in [9]. This data 
consist of 296 pairs of input-output measurements that are frequently used as a benchmark example for 
testing the identification algorithms. 
 
3. Structure Identification 
The structure identification process will be discussed in Subsections 3.1 through 3.4 as follows: 
 
3.1. Rule Generation by FCM Clustering Algorithm    
Suppose ^ `1 2 hN X x , x , ..., x= �\ is a set of data, where N is the number of data vectors and h is the 

dimension of each data vector xk = (xk1, xk2, …, xkh) ,h�\ k = 1, 2, …, N. The problem of the determination 
of the number of the fuzzy rules from a given set of input-output data is equivalent to the assignment of c 
number of fuzzy partitions to the vectors in X. In conventional fuzzy modelling, determination of the 
number of the rules was done simply by dividing (partitioning) the input and output space independent 
from each other into several subspaces, which led either to the large number of partitions (rules) or 
insufficient partitions (rules) [12]. To solve the problem of redundant or insufficient number of rules, the 
fuzzy c-means clustering method was adopted by Pedrycz [7] to generate the optimum number of the 
rules. A question that can be raised is: Why clustering is required in function approximation? Since the 
goal of the fuzzy modelling is to approximate a complex nonlinear function of the system at hand, thus 
fuzzy modelling is function approximation. The research conducted by Krenovich and Yam  in 2000 [13] 
showed that there exist new reasonable criteria with respect to which clustering-based function 
approximation is indeed the optimum method of function approximation. The most widely used fuzzy 
clustering algorithm is the fuzzy c-means (FCM) algorithm. The FCM initially was developed by Dunn 
[14] and extended by Bezdek [11]. For clarification of notation, the FCM algorithm is briefly presented 
here. The objective is to find the integer c (the number of the clusters),1 ,c N� �  and a c fuzzy partition 
of a given data set X exhibiting categorically homogeneous subsets [11]. The two important requirements 
for ideal clustering are the compactness and well-separation properties. One approach to satisfy these two 
requirements is the objective function methods. The most applicable objective function for the fuzzy 
clustering is the weighted within-group sum of squared error. Typically, local minimums of the objective 
function are defined as optimum clustering. Minimization of the objective function yields hyperspherical 
cluster shapes if the Euclidean distance ikd of each data point kx to each of the cluster centres iv is used as a 
measure of dissimilarity (i.e., ik k id x v−= ) and the membership values of each data point to each cluster 
is used as a measure of similarity [11]. Therefore, the problem of the fuzzy clustering is to find the 
optimum membership values of all data points in all clusters ( )iku , and the centres of clusters iv . The 
membership value of all data sets in all clusters can be combined in a c×N  matrix [ ]ikU u=   (i = 1, 2, …, 
c and k = 1, 2, …, N) and all cluster centres can be arrayed in vector V = [v1, v2, …, vc] c h×�\  with 

.h
iv �\ The clustering is realized by minimizing the following objective: 

                                                                                
2

1 1
( ) ( )

N c m
m ik k i

k i
J U,V u x v

= =
= −∑ ∑                                                               (3) 

where parameter [1, )m� f is a fuzziness parameter (weighting exponent) that defines the fuzziness 
between clusters. The minimization of equation (3) is a constrained optimization problem subjected to the 
following constrains:  
                       ^ `1 1| [0,1] ; 1 ; 0c N c N

fc ik ik iki kU M U u i, k u k u N i×
= =� = � � � = � � � �∑ ∑\                            (4) 

which is solved in an iterative manner [11] through the following steps: 
Step 1. Choose the optimum number of clusters c, and the fuzziness parameter m 
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Step 2. Choose the termination criterion 0H !   
Step 3. Guess the initial position of cluster centre V0 = [v1

(0), v2
(0),…, vc

(0)] 
Step 4. Calculate the membership value for all data points                                                     

                                                               

1(2 1)( 1)
( )

( 1)1

ml
c k il

ik lj k j

x v
u

x v

−−
−

−=

ª º§ ·−« »¨ ¸= ∑« »¨ ¸« »−¨ ¸
© ¹« »¬ ¼

                                                (5)     

where xk is k-th data and l is the iteration number.      
Step 5. Calculate the cluster centres              

                       

( )

( ) 1
( )

1

( )

( )

N l m
kikl k

i N l m
ik

k

xu
v

u

=

=

∑
=

∑
                                                            (6)  

Step 6. Check the termination condition                
                                                                      ( 1) ( )l lU U H+ − d                                                             (7) 

IF equation (7) is satisfied STOP, otherwise Go To step 3 
 

3.2. Output Data Membership Assignment 
At this stage, it is required to assign an appropriate membership function to each row of membership 
matrix [ ]ikU u=  resulting from the output data clustering, to account for data different than the training 
data and for the model generalization. The common approach is to approximate all the membership values 

iku of one cluster by a simple triangular, trapezoidal, or Gaussian function. A Gaussian membership 
function has two parameters (centre iV  and width ia ), a triangular membership function at most has three 
parameters, and a trapezoidal fuzzy membership function has four parameters which give more degrees of 
freedom in terms of tuning, if necessary. The trapezoidal is selected in this study.  
 
3.3. Input Selection 
Selection of the main input variables from all possible input variables is important for system modelling. 
Obviously, incorporating only the important variables into a model provides a simpler and more useful 
model especially for the real-time control applications. The objective of this important task is to reduce 
the dimension of the model input without a significant loss in accuracy. A simple, effective and practical 
method of main input selection is proposed in [10]. Based on the proposed method, a quantitative index 

jS  is calculated for each input variable as follows: 

                                                                
( )
( )1

(max( ) min( )

max( ) min( )

c ij ij
j

i= j j
=S

* − *

* − *
�                                                        (8) 

where ij* ={set of inputs jx with 1ik u = , j = 1, 2,…, r0, i = 1, 2,…, c and k = 1, 2,…, N} in the i-th rule 
(cluster), j* is the entire range of the variable jx , c is the number of  rules, and r0 is the number of all 
possible input candidates. Equation (8) was concluded from the fact that, in the calculation of the firing 
strength of the i-th rule (wi), either from algebraic product operator 1 ( )r

i jj= ijw = A x� , or from min 

operator min( ( ),..., ( ))i ij j ir rw A x A x= , the membership value “one” is the neutral element. Therefore, the 
input variables with many “one” elements in their membership function correspond to a large value of jS  
(in-effective input variables), and can be discarded from the input candidates. However, equation (8), 
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which was presented in [10], cannot be used in the case that the set ij*  has only one entry which means 
the i-th cluster of the j-th axis of the input variable jx  has only one member with membership 
value 1ik u = . Such a problem can be maintained by an improved form of equation (8) as: 

                                                            
1 max( )

c ij
j

ji= x
S

*∑= �                                                             (9) 

 
3.4. Input Data Membership Assignment 
After the main input variables were selected, they have to be partitioned into the appropriate fuzzy sets in 
order to produce the antecedent fuzzy set of each rule. One simple way to partition the input space is to 
equate the membership value of each input datum to its corresponding output membership value which is 
called the “output cluster projection onto input axes” in [9]; then approximate the raw membership values 
of each input cluster with an appropriate fuzzy membership function, e.g., trapezoidal fuzzy function. The 
problem with this technique is that the resulting membership functions are not convex and further step is 
required to assign a convex fuzzy membership function to each raw cluster as shown in Figure 1:   
 

  (a) jx
iku

    (b)

iku

jx       (c) jx
iku

                                        
Figure 1: Input data membership assignment, (a) Projection of the i-th output cluster onto the j-th input variable; (b) 
the convex hull of the input cluster; (c) approximated trapezoidal fuzzy membership function (reproduced from [9]). 

 
As reported in [10], “there is no reason for the input membership values to be equal to the output 
membership values at each sample point.” In order to solve the problem concerning the input membership 
assignment, another technique was suggested by Emami et al. [10], which assumes that only the peak 
points (the data points with membership values of “one” or close to “one”), should be the same for input 
and output clusters, and the membership value of the remaining data points are calculated through a 
technique called line fuzzy clustering algorithm. Therefore, the technique presented in [10] is adopted to 
form the input membership functions in this study.  
 
4. Reasoning Mechanism 
One major step of fuzzy modelling is to decide about the reasoning mechanism. For the approximate 
reasoning with multi-input-single-output fuzzy rules shown in equation (2), two approaches can be 
recognized in the literature: 1) first aggregate the output of all rules and then infer, (FATI); 2) first infer 
then aggregate, (FITA). According to [4] the two methods of inference, FATI and FITA always give the 
same output. Based on the second method, FITA, Wang and Mendel [15], Yager [16], Sugeno and 
Yasukawa [9] introduced the direct fuzzy reasoning methods in which the model output ŷ can be 
computed as the normalized linear combinations of the defuzzified value of the individual rules as 
follows: 

                                                                               1

1

ˆ
oR

i ii
R

ii

y
y

τ

τ
=

=

= ∑
∑

                                                              (10) 

where in [16] iτ is the min operator, and in  [9] and [15] functions iτ is the algebraic product operator. In 
[9] and [16] o

iy is the centre of area of consequent fuzzy membership function, where as in [15] o
iy is the 

smallest value (in terms of the magnitude) of support of consequent fuzzy set of each individual rule, 
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which has a membership value equal to “one”. The number of rules R is equal to the number of clusters c. 
In order to compensate for the inaccuracies and uncertainties that may be contained in the antecedent and 
consequent parts of the rules, a parameterized direct reasoning method, based on equation (10), is 
introduced in this study as follows: 
                                                                 * *

1ˆ [ ][ ]R
i iiy W y W y= == ∑                                                             (11)  

where *
1

o R
ii i iiy yτ τ== ∑  is the defuzzified output of the i-th rule, and iW  (i = 1, 2, …, R), is the weight of 

the i-th rule (design parameter) which should be identified such that to minimize the performance index 
(PI), which is mean squared error (MSE). With the proposed direct fuzzy reasoning method, no longer 
one is restricted to choose a certain value for o

iy  the way it was chosen in [9] and [16] as a centroid of the 
consequent fuzzy set, in which the calculation of centroid was required. The only condition is that o

iy  
should have membership value of “one”. The idea is to calculate the total output of fuzzy model by the 
weighted sum of the output of each rule. In the simulation section it will be shown that, by tuning the rule 
weights the modelling error can be reduced significantly and efficiently in comparison to the existing fine 
tuning procedures (e.g., [9] and [10]) which deal with a large number of parameters. This method can also 
facilitate modification of the output of each individual rule based on the new observation without 
changing its membership functions. The method is convenient for online training and real-time control 
applications in fuzzy controllers. The problem of learning the weights (parameters) can be carried out 
using a gradient descent technique based on the instantaneous difference of the fuzzy model output and 
actual output, ˆ ,k k ke y y= − in online real-time applications or mean squared error in off-line learning as 
follows:  

                                                             
2

1 ˆ( )N
k kk y y

PI e
N

= −
= =

∑                                                          (12) 

                                                         
( )2*

1 1( )N R
k i i kk iy W y

PI
N

= =−
=
∑ ∑

                                                   (13) 

Using the gradient technique and applying the chain rule at the z-th step of learning process the following 
updating law for rule weights is obtained: 

                                                              
*

12 ( )
( )

z zN
kk k

i
LR e y

W z
N
=' =

∑                                                           (14) 

                                             1 1 12 ( ( )
( 1) ( )

z o zN R R
i i ik i ik

i i
LR e y

W z W z
N
τ τ= = =+ = +

∑ ∑ ∑                                       (15) 

where LR , 0 1LRd d , is the learning rate. 
 
5. Parameter Identification 
In the literature, the parameters of a fuzzy model refer to those of the membership functions. In [10] four 
additional parameters of the reasoning mechanism, namely , , ,p q D and E , are used. There are two 
problems concerning the parameter identification in fuzzy modelling: 1) the large number of parameters, 
2) the techniques of the parameter identification; e.g., a heuristic method is used in [9] and [10] to identify 
the parameters of membership functions (e.g., 96 parameters for fuzzy model of nonlinear static function).  
In this study, the parameter identification is referred to as the identification of the weights of the rules 
which are equal to the number of rules, as discussed in the preceding sections. The distinguishing features 
of the methodology proposed in this study are:  

1. the number of parameters to be tuned is significantly reduced. 
2. the gradient descent based tuning method is used instead of the heuristic method.  



 8

6. Fuzzy Modelling Algorithm in Summary 
The flowchart of the improved and modified fuzzy modelling algorithm is given in Figure 2. 
 

Start

Choose the initial value of m from the interval [1.5, 2.5]

Set number of clusters c = 2

Perform the cluster validity analysis

Perform fuzzy clustering for output data

Assign proper membership functions to the output clusters

Sc (U, V):  minimal?

c = c + 1

No

Yes

Select main input variables

Assign proper membership functions to the input variables

Set the weights of rules to “one”

Calculate the output of fuzzy model using equation (11) and PI from equation (12)

Plot PI vs. m and choose the value of m which minimize PI

End

Adjust the weights of rules through gradient descent method, equation (15)

 
Figure 2:  Fuzzy modelling algorithm. 
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7. Numerical Simulation  
As mentioned in Section 2, two example problems are studied to illustrate the working of the proposed 
systematic method, its simplicity, capabilities and performance.  
Example 1 - Static Nonlinear System. The proposed systematic methodology is applied to build a fuzzy 
model of the system. The value of the fuzziness parameter m is set to m=1.67. For a set of randomly 
chosen initial cluster centres, the cluster validity analysis is performed, a rough fuzzy model of the system 
is built, and the following results are obtained.  
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 Figure 3: (a) Variation of cluster validity index (Sc) with c; (b) Variation of performance index with c. 

 
As shown in Figure 3(a), there is no significant change in the minimum value of the cluster validity index 
after c = 10 and the value of this index remains close to 52− with small fluctuation. Figure 3(b) shows 
that the performance index for c = 8 and c = 9 are almost the same, and after c = 9 the value of PI 
increases. With these results one can make a trade-off between the interpretability and the performance of 
the fuzzy model. To have satisfactory performance with a small number of rules, c = 8 is chosen as an 
optimum number of clusters. Next step is to perform the FCM clustering for output data. The termination 
criterion is set to 510H −= , the cluster centres are randomly initialized, and matrix [ ]ikU u=  is obtained as 
a result of FCM clustering. After clustering, suitable trapezoidal membership functions are assigned to the 
output clusters as shown in Figure 4(a). At this stage, the main input selection is accomplished and the 
following values are obtained for indexS from equation (9), as 1 0.0025,S =    2 0.0013,S =    3 0.0181,S =  

4 0.0283.S = The values of 1S  and 2S , which correspond to x1 and x2 respectively, are lower than those 
corresponding to x3 and x4, thus x1 and x2 are the main inputs of the system. Next step is to form the 
membership functions of input variables. This is performed using the algorithm given in [10] and a rough 
fuzzy model of the system is obtained as shown in Figure 4(b). At this stage, the output of the fuzzy 
model can be calculated using equation (11) by setting the weights of all rules to “one”, i.e., W = [1, 1, 1, 
1, 1, 1, 1, 1]. Now, the weights of the rules can be identified using a simple updating law presented in 
equation (15). The procedure is performed and the rules weights are calculated as W = [0.8061, 1.0085, 
0.8728, 1.1153, 1.007, 1.0693, 0.8650, 1.5658], and the performance index of PI = 0.044 is obtained. The 
above performance index is achieved by tuning only the rules weights (8 parameters) and the improved 
clustering algorithm. The performance index of Sugeno-Yasukawa’s position type model after 20 
iterations, for 72 parameters by trial and error method is PI = 0.079 [9]. In Emami et al. [10], after 5 
iterations for 96 parameters with the same tuning method as in [9], PI = 0.0106 was achieved. It should be 
noted that the improved performance index in [10] comes with tuning a large number of parameters. The 
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number of parameters exponentially grows with the number of inputs, outputs and rules. Then tuning by 
the trial and error method will become cumbersome and the applicability of method can be challenged. 
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Figure 4: (a) Approximation of output clusters by trapezoidal fuzzy set; (b) Initial fuzzy model of the system. 

 
The weights tuning results and a comparison of the actual output and model output are shown in Figures 
5(a) and (b), respectively. 
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 Figure 5: (a) Variation of the performance index (PI) with the reasoning parameters; 

(b) Comparison of system output with fuzzy model output. 
 

Example 2 - Box and Jenkins’ Gas Furnace Identification Problem. This example consists of 296 input-
output samples of a gas process. The process has one input variable, gas flow u(t), and  one output 
variable, the concentration of CO2, y(t) [17]. Since the system is dynamical, each instantaneous value of 
the output ( )y t   can be regarded as being influenced by ten inputs ( 1), ..., ( 4),y t y t− − ( 1), ..., ( 6)u t u t− − . 
Due to space limitation, only the results of modelling procedure are presented here. The fuzziness 
parameter is set to m = 1.9 and the following three inputs are determined as the main input 
variables ( 1),y t − ( 2), ( 3)u t u t− − .   
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 Figure 6: (a) Cluster validity index; (b) Comparison of fuzzy model output and actual output. 

 
The cluster validity analysis is performed, and c = 8 has been identified as the optimum number of the 
clusters.  Figure 6(a) shows cluster validity analysis, and Figure 6(b) indicates a comparison of the fuzzy 
model output with actual output. After six iterations, the rules weights are determined as W = [1.0043, 
1.0054, 1.0044, 1.0039, 1.008, 1.0063, 1.0053, 1.0045], and the performance index is reduced to PI = 
0.102, which is less than the ones reported in [9] and [10]. 
 
8. Conclusion 
In this article, an improved and simplified systematic fuzzy modelling was proposed. An important 
feature of the proposed methodology is that the number of parameters to be tuned is significantly reduced 
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in comparison to the existing literature, by introducing a parameterized reasoning mechanism while the 
modelling performance is preserved. By introducing the rules weights, the total cardinality of each 
individual rule is investigated in the rule base, which can be a measure for rule generation accuracy. 
Utilization of the variation of the performance index with number of clusters (i.e., Figure 3(b)) as an 
additional criterion to choose the optimum number of the clusters (rules) was proposed and its 
effectiveness was shown by simulation results. The bottlenecks of the FCM clustering algorithm were 
extensively studied, but due to space limitation, it will be reported in another article.   
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