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Computing the minimum distance between objects is known to be a complex problem par-
ticularly in compact dynamic environments. Determining the minimum distance between
complex objects has been solved by many different authors. Some methods rely on com-
putational geometry techniques, while others rely on numerical optimization techniques.
Most algorithms can only deal with convex objects and thus need to be partitioned concave
objects into smaller purely-convex sub-objects. This usually results in increased run times
as all pair-wise sub-object combinations need to be tested. In this paper, a two-stage dis-
tance determination method is proposed to perform precise and fast distance calculations
for concave objects. In the first stage, a pruning strategy is used to obtain the closest pair of
sub-objects. In the second stage, the set of closest features is used in a local optimization
method to find the exact distance. Numerical results for different complex objects showing
the proposed algorithm’s capabilities are included. The preliminary implementation of the
proposed algorithm has proven to be robust and computationally efficient.

1 INTRODUCTION

In the computer simulation of dynamical systems, distance determination algorithms are
frequently used to determine whether two objects are in contact or not or to quantify how
close the objects are from one another. During the last three decades, many authors have
developed different distance determination and collision detection algorithms. These al-
gorithms can be divided into three basic categories depending on the particular problem
they solve: 1) collision detection, 2) approximate or exact separation distance, and 3) in-
terference distance. In the first type, the algorithms only determine if there is interference
between objects but do not quantify how far the objects are from one another [1, 2]. In
the second type, the shortest distance between two objects is sought. More particularly, the
point on one object that is closest to the other object and vice versa are sought. In the third
type, algorithms quantify the amount of interference between two colliding objects which
are often used to determine contact forces [3]. Following is a brief overview of the most
relevant methods proposed to date.
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1.1 Distance Determination and Collision Detection

The two main approaches to solve the minimum distance between two bodies are gener-
ically labelled as analytical and numerical approaches. Analytical methods are generally
computationally very efficient. Unfortunately, such methods are complicated to develop
and in some cases, when the objects are complex, not realistically feasible. In contrast, nu-
merical or iterative methods are not as computationally efficient but are generally capable
of solving much more complicated problems with little to no modifications to the algorithm
itself. Amongst the numerical methods, a separation based on the type of geometries that
the algorithms can handle is generally made. Namely, there are methods for convex objects
and others for concave objects.

1.1.1 Convex Methods

One of the first distance determination algorithms is the one described in [4] where the
approximate separation distance between two objects is reported as the separation distance
between axis-aligned bounding boxes containing the original objects. A similar method
was proposed in [1] where the objects are replaced by bounding spheres whose separation
distance crudely approximates the distance between the objects they contain. Since then,
many approximate and exact distance determination algorithms have been proposed in the
literature. In general, most methods are variations or those described in [5], [6] and [7].
In [5], the separation distance problem is formulated as a numerical optimization problem
where the goal is to minimize the distance between two points while each satisfies the sets
of linear constraints defining the surfaces of each of the objects. This method was later
extended in [8] to allow the algorithm to handle objects with quadratic surfaces.
On the other hand, the methods described in [6] makes use of a geometrical addition to
simplify the problem. Namely the Minkowski sum is used to convert the distance problem
into one where the distance between the Minkowski sum of the two polyhedral objects
and a single point, is sought. This methods was later modified in [9] to improve upon
its computational efficiency. Finally, in [7], a method was proposed where the Voronoi
regions for each of the object features is obtained off-line. Then, at run-time, the closest
object features are found by exhaustively checking whether for the object features that are
fully contained within each others’ Voronoi regions.

1.1.2 Concave Methods

To date, the vast majority of distance determination algorithms published in the literature
are, in essence, limited to deal with purely convex polyhedra. As such, to allow these
algorithms to deal with concave objects, all objects are pre-processed in order to partition
them into purely convex polyhedra often called sub-objects [8]. The distance problem is
then solved by performing m£ n distance queries between all possible combinations of n
sub-objects on object 1 andm sub-objects on object 2. These exhaustive methods have the
advantage of relying on existing distance algorithms that have proven to be reliable for the
convex problem. On the other hand, they have the disadvantage that the number of distance
queries drastically increases as the complexity of the objects increases.
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Looking to improve the computational efficiency of complex distance queries, certain
works have concentrated on decomposition-free solutions. This is the case of the colli-
sion detection algorithm for non-convex bodies described in [2]. This method, being only
a collision detection algorithm, does not quantify the distance between objects.
Recently, novel distance determination algorithms (not limited to convex or concave poly-
hedra) were developed and reported in [10, 11]. Such algorithms do not need to partition
the concave geometries into purely convex pieces but rather rely on discretizing the geom-
etry using an off-line generated surface mesh. One of these methods is theMLSdist which
will be described in more detail in a later section as it is one of the key components of the
pruning algorithm proposed in this paper.

1.2 Pruning Methods

To decrease the computational time needed to perform each collision or distance query,
most distance determination algorithms use a relatively fast pre-processing stage to help
reduce the total number of objects or object features to be used during the exact distance
queries see for instance [12, 13, 14]. In general, these algorithms are termed pruning algo-
rithms as they are used to pick only those features of the objects that are deemed impor-
tant for the collision or distance query. By determining the exact separation distance only
between the closest features, one can eliminate the unnecessary computational expense
needed to process all features that are relatively far from each other [15, 16].
Pruning algorithms can be divided into the following two categories:

• Global pruning: where the pruning is done at the object level by eliminating the
objects that are relatively far away from each other [15].

• Local pruning: where the pruning is done at the feature level by eliminating the
features that are relatively far away from each other [17].

The essential component of most pruning algorithms is a bounding box hierarchical tree
representation of the object. In general, the base of the tree corresponds to a bounding box
containing the entire object and its leafs correspond to bounding boxes containing purely
convex faces. Early work in the area concentrated on the use of Axis Aligned Bounding
Boxes (AABB) whereas the latest works have reported on the use of Oriented Bounding
Boxes (OBB) as the later have shown better result.

1.3 Contribution and organization

In this paper, a two-stage distance determination algorithm is proposed for both convex and
concave objects. In the first stage, using the results from a fast but approximate distance
determination algorithm, the closest pairs of object features are found. The closest pairs
are then passed, one pair at the time, to an exact distance algorithm. As a result of the novel
combination, fast and accurate results for the minimum distance problem are found.
The remainder of this paper is organized as follows. Section 2 briefly describes the two
existing distance determination algorithms used in this work. Next, Section 3 describes
how the approximate methods (Section 2.1) is used to create a novel pruning algorithm. The
resulting pairs of features are then sent to the exact algorithm (Section 2.2). The capabilities

2005 CCToMMM3 Symposium 3



Figure 1: Finding all possible local minima using the MLSdist algorithm

of the overall algorithm are illustrated in Section 4 by a few numerical examples. Finally,
Section 5 gives some concluding remarks.

2 BACKGROUND

The Multi Local Search algorithm (MLSdist) described in [11] and the exact optimization-
based algorithm described in [8] (mindist) are used in the work presented here as part of
the proposed distance determination algorithm. Therefore, brief descriptions of the MLS-
dist and mindist algorithms are included in this section.
Note that the results of some processes necessary for the proposed algorithm are time in-
variant. That is, they require data or perform processes whose results do not depend with
the objects position or their orientation. As a result, these processes only need to be com-
puted once and their results stored with the geometrical description of the objects. In what
follows, these processes are termed as off-line processes. Conversely, the on-line processes
or steps are those that are executed every time a distance query is performed as their results
depend on the relative position and orientation of the objects.

2.1 MLSdist Algorithm

TheMLSdist algorithm is an approximate distance determination algorithm capable of han-
dling distance queries with objects of any degree of concavity. The main idea behind the
MLSdist algorithm is to discretize the geometry of the object by creating a three dimen-
sional surface mesh on the surface of the object. The separation distance problem then
becomes a combinatorial one where the pair of points, one on the surface of each object,
that minimizes the distance between objects is sought. Following are some details on the
off-line and on-line stages of the MLSdist algorithm.

2.1.1 Off-Line Processes

Before any distance query is performed with the MLSdist algorithm, it is necessary to first
pre-process each geometry in order to produce a surface mesh for each object (concave or
not). Thus the geometry of each object is replaced by an off-line generated surface mesh
whose nodes lie on the surface of the original object. The mesh is stored with the object
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as two different matrices; one containing the coordinates of the node points and the second
listing how these nodes are interconnected to its adjacent nodes on the mesh. For more
details on this refer to [10, 11].

2.1.2 On-Line Processes

At run time, the MLSdist algorithm is used to find the closest pair of nodes, one on each
object which will give the shortest distance between them. Initially the MLSdist algorithm
randomly generates multiple starting node pairs. Node points are individually moved along
the surface mesh connections until each node pair finds its local minima, i.e., no combina-
tion of adjacent nodes produces a shorter distance.
Unlike convex objects, concave objects may produce more than one local minimum. As a
result, many local searches as the one described above are performed at every MLSdist run
each with different randomly generated start point pairs in order to improve the algorithm’s
chances to obtain the global solution. Figure 1 shows a dark line (bottom centre) joining the
nodes representing the global solution of the aforementioned combinatorial optimization
problem. Also in Figure 1 are light lines showing the location of other possible local
minima. The minimum of all such local minima represents the separation distance returned
byMLSdist.
Unfortunately, since the geometry of the objects is discretized by using surface meshes,
the solution given by the MLSdist algorithm is only approximate. The accuracy of the
solution will be a direct function of the mesh density where denser meshes yield better
solutions. Note that if the mesh is dense, the object is replaced by a large number of mesh
nodes. Consequently, the complexity of the combinatorial optimization problem increases
and thus the algorithm takes longer to find the closest pair of nodes.

2.2 Mindist algorithm

The method described in [5] for solving the exact separation distance problem is formulated
as a constrained numerical optimization problem. More particularly, the separation distance
is formulated as

Minimize
x1, x2

: d2 = (x1 ° x2)
T (x1 ° x2) (1a)

subject to : A1x1 ∏ b1 and A2x2 ∏ b2 (1b)
where x1 and x2 corresponded to the Cartesian coordinates of points for bodies 1 and
2, respectively. The linear inequality constraints shown as Aixi ∏ bi in equation (1b)
represent a convex set of ni half-spaces fully defining the solid geometry of object i. In
equation (1b), Ai is a ni £ 3 matrix where rows represent the normal to the ith half-space
surface and bi is a vector ni £ 1 whose entries give the exact location of the half-space
boundary. To reduce the computational expense, the objective function is the square of
the Euclidian distance between points x1 and x2 which can be done since minimizing d2

is equivalent to minimizing
p

d2 if d is a positive number as is the case in the separation
distance problem.
When dealing with convex objects, the problem formulated in equations (1) represent a
linearly constrained quadratic problem which can be solved using local optimization algo-
rithms such as sequential quadratic programming [8].
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a) b)

Figure 2: a) Finding closest pair of nodes byMLSdist. b) Matching closest pair of nodes to
the particular convex sub-object of the original object from node-to-subobject database.

2.2.1 Off-Line Processes

Given that the geometries represented by the constraints in equation (1b), concave objects
need to be partitioned into purely convex pieces (here called sub-objects). This process can
be performed using automatic partitioning tools (e.g., [18]) but is often done manually as
the partitioning problem has no unique solution and human intervention is often necessary
to select the best partition [11].

2.2.2 On-Line Processes

At runtime, all possible combinations of convex sub-object pairs are passed, one pair at
the time, to a local optimization algorithm whose solution of each is a pair of points on
the boundary of the object. The distance between such two points is then reported as
the separation distance between the given sub-object pair. In general, if object 1 has m
convex sub-objects and object 2 has n convex sub-objects, the outcome of the distance
determination between the original concave objects consists of allm£n point pairs and all
m £ n distances, between all sub-object pairs. It is the smallest value amongst all m £ n
distances that is reported as the shortest distance between the two original concave objects.
The computational time taken by mindist and all other exact distance determination algo-
rithms is closely related to the total number of sub-object pairs as well as the number of
surfaces representing each sub-object pair.

3 PROPOSED METHOD

Here, a distance determination algorithm (SOPA+mindist) is proposed to find fast and pre-
cise distance between concave objects. The developed distance determination algorithm
has two stages. In the first stage the closest sub-objects pairs are found using the results
from MLSdist, whereas in the second stage the exact distance between these sub-objects is
obtained using mindist.

3.1 Sub-Object Pruning Algorithm

The Sub-Object Pruning Algorithm (SOPA) consists of two stages. In the first stage, the
closest pair of nodes are found using the MLSdist algorithm described earlier (see Figure
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2a). Next, the sub-object to which the particular solution node belongs to is found from a
node-to-subobject database (see Figure 2b). This database is created off-line with the help
of a pre-processing algorithm that checks which mesh node lies on the surface of which
sub-object. If the node satisfies all surface constrains for a given sub-object, the node is
said to be on that sub-object. Sometimes, a node may lie on more than one sub-object.
Once all sets of convex sub-objects have been identified, they are all passed, one pair at the
time, to the second stage of the algorithm namely the mindist algorithm where the exact
distance between objects is computed.
Note that in simulations where multiple simultaneous contact regions may be encountered,
it is necessary to use all or most local minima as sent by the MLSdist algorithms. These
multiple minima are referred to as niches or clusters and allow to handle multiple contact
regions in the form of multiple node pairs [10]. That is, the sets of sub-objects correspond-
ing to several local minima are passed to the exact distance determination algorithm one
pair at a time, and as a result, multiple contact situations may be identified and handled.
Note that if a mesh node belongs to more than one sub-object, all sub-objects corresponding
to such node are sent to the second stage.
Additional computational time savings can be accomplished by using coarse meshes to
represent the objects. That is, since objects are pruned only to the sub-object level, it
is possible to use a relatively coarse mesh to represent the objects. Using coarse mesh not
only improves the timeMLSdist needs to find the closest pair of nodes but also decreases the
amount of memory required to store the meshed geometries and their related information.

3.2 Exact Distance Calculation

With a small subset of sub-objects, mindist, the exact distance determination algorithm, is
executed. Note that to solve this second stage, other exact approaches such as analytical
or exhaustive feature to feature methods could be used to determine the exact distance
between the convex sub-object pair. The mindist algorithm is used here as the available
implementation includes the ability of obtaining the interference distance described in [19]
thus allowing the algorithm to be used in contact dynamics simulations [20].

4 NUMERICAL EXAMPLES

In this section, numerical examples are presented where the minimum distance problem is
solved for two different sets of complex objects while travelling through a given trajectory.
The numerical tests are first performed on the scenario shown in Figure 2 consisting of a
set of two objects simulating a version of the ORU battery and its fixture for International
Space Station. Figure 3 represents second scenario which consists of simplified version of
two hands about to do a handshake. The first example will be referred to as the BF case
whereas the handshake case will be abbreviated as HS.
In the context of the distance determination algorithms, robustness and computational time
are the most important criteria for evaluating the performance of a particular algorithm.
That is, algorithm must always find the global solution by taking the least amount of com-
putational time. Thus, the tests on the proposed algorithms presented here mainly concen-
trate these two criteria.
For the tests presented here and in order to evaluate the worst case scenario, no prior knowl-
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Figure 3: Complex geometry Hand-Hand (simplified version of human hand).

edge of the solution is assumed in each run. That is, although the previous time-step solu-
tion is usually a good start point for the next time step, all start points for theMLSdist were
generated at random. Since each test is performed over many runs, the average of the par-
ticular performance measure being considered (e.g., computational time) is reported while
its robustness is reported as an absolute value.
Note that all the tests were performed a large number of times under similar conditions. In
the present study, all tests are presented as the result of running the entire trajectory up to
10, 000 times with the same parameters but different randomly generated start point pairs.
Moreover, each test trajectory consists of 151 time steps between the start and end positions
for a total number 1.51 million distance queries per test.

4.1 Geometries and Trajectories

In the BF case, the battery (31£74£92 cm) was originally set at a distance of approximately
2 metres to the left of the fixture (62£ 86£ 99 cm). The convex partitioned version of the
BF geometries shown in Figure 2b consist of the battery divided into 14 convex sub-objects
and the fixture divided into 9 sub-objects for a total sub-object pair combination of 126. The
trajectory for the BF case presented here consists of both linear and angular motions where
at the end of the trajectory the battery is inserted in the fixture.
As explained earlier, the HS case consists of a set of two hands where one hand (131 £
185£ 90mm). The convex partitioned version of the hand is divided into 92 purely convex
sub-objects for a total sub-object pair combination of 8, 464. Trajectory in the HS case
consists of only linear motion starting at a distance of approximately 120 mm from one
another and ending close a handshake configuration. Figure 3 shows the hands in a point
in the middle of the trajectory.

4.2 Fine and Coarse Mesh Results

After several tests, it was found that 68% for the BF case and 61% for the HS case of the
total computational time is consumed by the MLSdist algorithm. In order to reduce the
computational time taken in this first stage, the objects can be replaced by relatively small
number of nodes. Here, when the objects are replaced by a relatively small number of nodes
the case will be referred to as a ”coarse mesh” case. Conversely, cases with relatively large
number of nodes will be referred to as cases with ”fine mesh”. Table 1 shows the number
of nodes on the surface mesh for each of the geometries as a function of the mesh size.
Table 1 also shows the number of surfaces and sub-objects for each object.
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Table 1: Details on the battery and fixture geometries.
Battery Fixture Hand

Convex pieces 14 9 92
Faces 97 64 1058

Nodes in fine mesh 1,241 1,842 2129
Nodes in coarse mesh 209 308 839
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Figure 4: 1) Distance (in metres) between Battery and Fixture for the BF case using
SOPA+mindist. 2) Number of sub-object pairs sent to the second stage of the algorithm
for both coarse and fine meshes.

It was noticed that the number of surfaces/sub-objects being sent to the second stage of the
algorithm was higher for the coarse meshed objects than for the fine meshed objects due
to more mesh nodes belonging to more than one sub-object. On the other hand, due to the
smaller number of nodes on the coarsely meshed objects, the computational time required
by the MLSdist was greatly reduced. It was also found that a smaller number of randomly
generated start points are sufficient for the cases using the coarse meshes as compared to
those with fine meshes.
In Figures 4 and 5, the upper graph shows the time history of the separation distance be-
tween objects for the BF case and the HS case, respectively. On the other hand, the lower
portion of Figures 4 and 5 shows the number of sub-object pairs sent to mindist algorithm
for the same two cases.

4.3 Comparison between SOPA+mindist and the exhaustive mindist algorithm

Each convex sub-object for the BF and HS cases has an average close to 7 and 11.5 faces,
respectively. As a result of all the sub-object combinations, the total number of surfaces
passed to the 126 distance queries is 1, 832 or an average close to 15 faces per distance
query for the BF case. At the same time, the total number of surfaces passed to mindist in
the 8, 464 minimum distance problems is 194, 672 or an average of approximately 23 per
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Figure 5: 1) Distance (in mm) between Hands in HF case using SOPA+mindist. 2) Number
of sub-object pairs sent to the second stage of the algorithm for both coarse and fine meshes.

Table 2: Timing test results for SOPA+mindist, and mindist.
BF HS

time [ms] Sub Sur time [ms] Sub Sur
mindist 4.2 126 1,832 422 8,464 194,672

SOPA+mindist fine 4.5 48 712 49 235 11,803
SOPA+mindist coarse 3.5 67 965 48 410 21,441

distance query for HS case. Note that in the current trajectory most of times the local and
global minima are located on the fingertips whose number of surfaces are 82 faces per sub-
object. Because of that the average number of surfaces used per distance query in the HS
case is often greater than 50.
The difference in the separation distance between SOPA+mindist and mindist algorithms
was found to be in the order of 10°9 to 10°17 for both coarse and fine meshed objects3. This
indicates the SOPA+mindist and mindist algorithms give equivalent results as the termina-
tion tolerance used for the local optimization algorithm within mindist is set to 10°6 in both
cases. This, suggests the first stage of the proposed algorithm is successfully passing the
correct sets of sub-objects to the exact distance query thus having a robustness of 100%.
Since the numerical results from both algorithms are equivalent, the next most important
piece of information is related to timing. In Table 2, the time in milliseconds, the number
of surfaces (Sur) and the number of sub-objects (Sub) used by mindist and SOPA+mindist
are reported. All timing tests were performed on a 2.8 GHz PC with 512 MB of RAM.
It can be seen there that the fastest overall is the SOPA+mindist using a relatively coarse
mesh. Its speed was close to 1/10 of the time taken by mindist for the complicated scenario
whereas it was only 20% faster than mindist in the simple BF case.

3Note that the units are dependent on those used to represent the objects. That is, the ORU battery and
fixture problem have dimensions in metres whereas the handshake has dimensions of millimetres.
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5 CONCLUSIONS

A two stage distance determination algorithm was developed to find the distance between
convex or concave objects . In the first stage, SOPA is used to obtain the closest features
(convex sub-objects) between a pair of concave objects. Then, a local optimization algo-
rithm is used to determine the exact distance between objects.
It was shown that the SOPA uses an off-line generated surface mesh to reduce the problem’s
complexity. When the objects are replaced by coarse mesh the computational time taken
by the SOPA is reduced considerably, while maintaining accuracy. Due to the use of SOPA
as pruning algorithm, number of sub-objects pairs used by mindist algorithm is reduced
considerably (50% in relatively simple cases whereas the reduction was up to 95% more
complicated scenarios). The results showed that as the complexity of the object increases,
the time taken to find the distance between objects by SOPA+mindist only increases by a
small amount whereas time taken for mindist is increasing in quadratically.
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