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The kinematics and workspace characteristics of the Tricept mechanism are studied. The
inverse displacement solution is provided for the case where the independent degrees of
freedom are defined as one translation and two rotations. An alternative solution to the
inverse displacement problem is provided based on the elevation of three points on the end
effector platform. This is then used in the formulation of a square dimensionally homoge-
neous Jacobian matrix whose condition number and singular values are then used to define
the dexterous workspace. The influence of architectural parameters on both the reachable
and dexterous workspace size is studied.

1 INTRODUCTION

Parallel manipulators have recently experienced more widespread attention as their various
advantages become better known. They have been successfully implemented in applica-
tions where advantages such as high stiffness, potentially higher end effector velocities,
and an ability to handle higher payloads, are of great importance. These characteristics
are all of great importance when dealing with the application of manufacturing, or more
specifically, machining.
One of the most notable parallel mechanisms to have been successfully implemented in
the manufacturing industry is the Tricept manipulator [1]. Sparked by the success of this
mechanism, and its curious architecture which includes 3 active and 1 passive limb (to be
explained later), a variety of researchers have also taken interest, and made contributions
in the development of this mechanism. Siciliano [2] developed the kinematics and studied
the manipulability of the Tricept. Architectural optimization of the Tricept and similar
mechanisms was undertaken by Zhang and Gosselin [3]. Most recently, the kinematics of
this class of manipulator, having a passive leg, was discussed by Joshi and Tsai [4], and
compared to that of a more conventional 3-UPU architecture, not having a passive leg [5].
Xi et al compared the reachable workspace characteristics of the Tricept to those of three
other 3-DOF architectures [6]. This paper will further the previous works by determining
the dexterous workspace size and furthermore, optimizing the architectural parameters to
obtain the largest possible dexterous workspace size.

1.1 Dexterity

Most of the work introduced has studied the Tricept manipulator as a translational device,
i.e., having independent degrees of freedom (DOF) corresponding to translations in the x,

2005 CCToMMM3 Symposium 1



y, and z axes. In this case, the Jacobian matrix J which relates the actuator velocities q̇ and
independent end effector velocities ẋ according to:

q̇ = Jẋ (1)

may be reduced to a 3 £ 3 and is dimensionally consistent, as in [6]. This allows the use
of conventional dexterity measures such as the condition number of the Jacobian matrix.
However, now consider the case where instead of the three translations being desired, only
a single translation and two rotations are desired, such as in [3]. Regardless of what con-
ventional methods are used to formulate the Jacobian matrix, either by partial derivatives,
screw theory, etc., all lead to a dimensionally inconsistent Jacobian matrix.
Gosselin [7] introduced a method for planar mechanisms where the conventional end effec-
tor velocities (two translational velocities and one rotational velocity, all producing motion
on the same plane) were modeled using the x, y components of the linear velocities of
two points on the end effector. The ensuing Jacobian matrix mapping the three actuator
velocities to the four linear velocities in the principle Cartesian directions, is dimensionally
homogeneous. Kim and Ryu [8] have expanded this method to 6-DOF mechanisms using
the x, y, and z components of the linear velocities of three points on the end effector. Pond
and Carretero [9] have recently shown that these Jacobians relating the actuator velocities
to end effector velocity vectors, ẋ, containing both independent and dependent motions,
as in [7] and [8] are unable to reliably measure the dexterity of the device as the physical
significance of the Jacobian’s singular values is unknown. Instead, the following method
of formulating the Jacobian matrix was proposed in [9].
First consider Kim and Ryu’s model of the Jacobian matrix for a Tricept manipulator having
three prismatic actuators, and points Ai (i = 1, 2, 3) are three designated points fixed to the
end effector. The variables in equation (1) are then:

q̇ =
£

l̇1 l̇2 l̇3

§T (2)

J =

2
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ẋ =
£

Ȧ1x Ȧ1y Ȧ1z Ȧ2x Ȧ2y Ȧ2z Ȧ3x Ȧ3y Ȧ3z

§T (4)

Pond and Carretero [9] have introduced a constraining matrix to equation (1):

q̇ = JPẋ0 (5)

where the constraining matrixPmaps independent to dependent Cartesian velocities (where
independent velocities may be defined for the Tricept as Ȧ1z , Ȧ2z , and Ȧ3z ):

P =

2
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and
ẋ0 =

£
Ȧ1z Ȧ2z Ȧ3z

§T (7)

The resulting multiplication of JP is a 3£3matrix mapping actuator velocities (l̇i) directly
to independent end effector velocities (Ȧiz ):

JP =

2
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The singular values of this matrix have an evident meaning and may therefore be used in
dexterity analysis. Before developing this Jacobian matrix for the Tricept manipulator, the
inverse kinematics must first be solved.

2 KINEMATICS

The basic architecture of the Tricept mechanism is depicted in Figure 1a. Three identical,
actuated limbs are connected to the exterior of the base and moving platform radii. These
limbs consist of a spherical - prismatic - spherical (SPS) kinematic chain, where the pris-
matic joint is actuated. Alternatively, one of the spherical joints could be substituted with
a universal joint with no consequence to the kinematic equations to be presented. In ei-
ther case, as each of the actuated limbs has mobility of at least 6-DOF, a passive prismatic
- universal (PU) limb exists at the centre of the mechanism to constrain the mobility of
the moving platform to 3-DOF. In many works, the order of joints of the passive chain is
interchanged to a UP limb (as opposed to the PU limb used in this paper). The resulting
architectures are kinematically equivalent. However, regardless of the arrangement of the
passive limb, in order to perform either of the two independent rotations, translation along
either the x and y axes or a rotation around the z-axis may result. As in [10] these unde-
sired, extraneous motions are termed parasitic motions. Intuitively, the magnitude of these
parasitic motions is zero if the axes of the universal joint of the passive limb intersect at a
point on the plane defined by the centres of the three spherical joints connecting the end
effector platform to the actuated limbs. As the PU arrangement of the passive limb reduces
or may even eliminate the defined parasitic motions, it is more beneficial in this application.

2.1 Inverse Kinematics

The independent degrees of freedom for the Tricept have been defined here as a translation
along the z-axis (Pz), and rotations around the x and y axes of the fixed frame {O}, or
angles √ and µ respectively (see Figure 1a). The remaining parasitic motions are transla-
tions along the x and y axes (Px and Py respectively), and a rotation around the z-axis, ¡.
The rotation around the z-axis is of little interest considering that a machine tool, mounted
on the end effector, is likely to have its spindle aligned with this axis anyhow. For that
reason, the rotation matrix corresponding to this rotation is multiplied last in the following
formulation of the overall rotation matrix relating the orientation of the moving frame {P}
to that of the base frame {O} :

ORP = Ry (µ)Rx(√)Rz(¡) (9)
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a) b)
Figure 1: Tricept mechanism: a) basic structure and frames of reference and b) vector
model for limb 3

When the moving platform is parallel to the base platform, the two revolute axes of the
universal joint are parallel with the base frame’s x and y axes. Because the orientation of
the universal joint’s second revolute axis (µ2) is dependent on the rotation around the first
(µ1), a post-multiplication of individual rotation matrices must be performed:

OR§
P

= Rx (µ1)Ry(µ2) (10)

The two resulting matrices presented in equations (9) and (10) are numerically equivalent.
It can easily be shown that the parasitic rotation around the z-axis can be obtained as:

s¡ =
sµ1sµ2

c√

(11)

where µ1 and µ2 are determined by equating known terms of the rotation matrices ORP and
OR§

P
.

Having solved for angles µ1 and µ2, vector P can be expressed in the base frame as:

p = c + OR§
P

Pd =
£

dsµ2 °dsµ1cµ2 c + dcµ1cµ2

§T (12)

The only unknown in equation (12) is the displacement of the passive prismatic joint, c.
Conveniently, this appears only in the solution for Pz which is defined and therefore c is
easily determined. The remainder of the solution of the inverse displacement problem i.e.,
solving for the actuated prismatic joint variables li, is a trivial exercise in vector algebra.
Let rp denote the magnitude of the end effector radius. Let Æ and Ø denote the angles made
by vector a1 with vectors a2 and a3 respectively. These angles are defined as Æ = 120±

and Ø = °120±. The position of the centre of the spherical joint of limb i, attached to
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the moving platform expressed in terms of the moving frame {P}, i.e., Pai, may then be
obtained by :

Pa1 =
£

rp 0 0
§T

,
Pa2 =

£
rpcÆ rpsÆ 0

§T

,
Pa3 =

£
rpcØ rpsØ 0

§T (13)

where cÆ and sÆ represent the cosine and sine of angle Æ, etc. These vectors, with respect
to the base frame, are denoted by vector ri and may be expressed as:

ri = p + OR§
P

Pai (14)

Letting rb denote the base platform radius, the positions of the spherical joints connected
to the base platform, with respect to the base frame {O} are:

b1 =
£

rb 0 0
§T

, b2 =
£

rbcÆ rbsÆ 0
§T

, b3 =
£

rbcØ rbsØ 0
§T (15)

Finally, the magnitude of each of the prismatic joints giving the final solution to the inverse
displacement problem, may be expressed as follows for limb i:

li = |ri ° bi| (16)

2.2 Alternate Inverse Kinematics

The previously presented kinematics will serve as a tool to verify a more novel method of
formulating the inverse kinematics for the given manipulator as follows, which will then
in turn, be used to formulate the constraining Jacobian (P). First, recall that the point Ai

corresponds to the centre of the spherical joint connecting limb i to the moving platform.
As suggested earlier in Section 1.1, the manipulator pose may be uniquely defined using
the three z values, Aiz (for i = 1, 2, 3). In this section, these three variables are deemed
independent and will be used to define the remaining dependent end effector variables,
namely Aix and Aiy , the x and y-components of Ai (depicted in Figure 1b).
Generally, the choice of which of the potential 9 motions (Aix , Aiy and Aiz ) to define as
independent is not trivial. In this case, as the end effector translation along the z-axis
is one of the defined independent degrees of freedom in section 2.1, at least one of the
three Aiz must be used here as an independent motion in the formulation of the alternate
inverse kinematics. Choosing each of the three Aiz values provides a consistent means of
measuring and comparing the ability of each of the three limbs to alter the manipulator
pose.
Consider again the vector sum equivalent to ri, written with respect to the base frame:

ri = c+ OR
P

°
Pd+ Pai

¢
(17)

This vector ri describes point Ai with respect to the base frame. Therefore, the three Aiz
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coordinates may be written as:

A1z = c + dcµ1cµ2 ° rp (cµ1sµ2) (18)
A2z = c + dcµ1cµ2 + rp (°cµ1sµ2cÆ + sµ1sÆ) (19)
A3z = c + dcµ1cµ2 + rp (°cµ1sµ2cØ + sµ1sØ) (20)

Independently subtracting equation (18) from (19) and (20) and rearranging results in the
following two relations:

(A2z ° A1z)

rp (1° cÆ)
= cµ1sµ2 +

sµ1sÆ

(1° cÆ)
(21)

(A3z ° A1z)

rp (1° cØ)
= cµ1sµ2 +

sµ1sØ

(1° cØ)
(22)

Now, subtracting equation (22) from (21), and isolating sµ1:

sµ1 =

∑
(A2z°A1z )
rp(1°cÆ) °

(A3z°A1z )

rp(1°cØ)

∏

sÆ
(1°cÆ) °

sØ

(1°cØ)
(23)

If the values Aiz are given, the only remaining unknown in equation (23) is sµ1 . Obviously,
two solutions exist for µ1. The range for µ1 may be limited to °90± ∑ µ1 ∑ 90± which
is consistent with its intended application (machining). This provides a means to obtain a
single solution for µ1 within that range. Substituting this solution back into equation (22)
and isolating sµ2:

sµ2 =

h
(A3z°A1z )

rp
° sµ1sØ

i

cµ1 (1° cØ)
(24)

Again, two possible solutions result but by limiting the range to within °90± ∑ µ2 ∑ 90±,
a single solution is found. With these two angles, the remainder of the solution is identical
to that of the conventional inverse displacement problem, commencing from equation (11).
The first derivative of these equations, with respect to time will be used in the formulation
of the Jacobian matrix, which is discussed in the following section.

2.3 Jacobian Formulation

In order to obtain the constrained, dimensionally homogeneous Jacobian matrix shown in
equation (8), the Jacobian matrix in equation (3) must first be developed according to the
methodology introduced by Kim and Ryu [8]. Consider a point anywhere on the plane
defined by the three spherical joints connected to the moving platform. Let vector g rep-
resent this point with respect to the base frame. This vector may be represented as an
appropriately weighted sum of the three vectors ri:

g = ki,1r1 + ki,2r2 + ki,3r3 (25)
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where ki,j (j = 1, 2, 3) are dimensionless constants in the range (0,1). The values of these
dimensionless constants may be easily solved using the system of three scalar equations in
(25). Making the substitution g = r

i
= bi + li into equation (25):

bi + li = ki,1r1 + ki,2r2 + ki,3r3 (26)

where vector li represents the actuated prismatic joint as in Figure 1b.
Taking the first time derivative of equation (26):

! £ lisli + l̇isli = ki,1ṙ1 + ki,2ṙ2 + ki,3ṙ3 (27)

where ! and sli are the angular velocity and unit vector associated with li respectively. In
order to eliminate ! from equation (27), the equation may be dot multiplied by sli:

l̇i = ki,1s
T

li
ṙ1 + ki,2s

T

li
ṙ2 + ki,3s

T

li
ṙ3 (28)

Writing this equation three times corresponding to each of three limbs produces the con-
ventional inverse Jq (where in this case Jq = I3£3) and direct Jx Jacobian matrices:

Jqq̇ = J
x
ẋ (29)

where the multiplication J°1
q

Jx produces the matrix J in equation (3), q̇ is equivalent to
that in equation (2). Recalling that when the point Ai is expressed in the base frame, it is
equivalent to the vector ri, and the vector ẋ in equation (29) is equivalent to the one defined
in equation (4).
Using the alternative form of the inverse kinematics presented in section 2.2, equations may
be developed for each of the defined dependent motions Aix and Aiy as functions of the
defined independent motions Aiz . The constraining matrix P in equation (6) is produced
by taking the first derivative with respect to time of these various equations, producing
the various partial derivative entries. These equations include (17-24) which relate Aiz

to the universal joint angles µ1 and µ2, and equations (11-16) relating µ1 and µ2 to the
actuator displacements li. Finally, the matrix multiplication JP results in the constrained,
dimensionally homogeneous Jacobian in equation (8). Further details on the development
of the constraining matrix may be obtained in [9]

3 WORKSPACE ANALYSIS

In this paper, the reachable workspace will be restricted to achievable poses without having
passed through a singular configuration. Intuitively, there are two different families of
singular configurations. The first is whenever any of the SPS limbs is parallel to the plane
defined by the three spherical joints around the end effector platform or the equivalent
plane in the base platform. The second family of singular configurations is defined by
the central passive limb. Whenever vectors c and d are perpendicular, the passive limb
has lost the ability for either rotating around the base frame’s x or y axes. The computer
algorithm determining the workspace size as a sum of areas in rad2 contains both singular
configurations as potential workspace boundary conditions.
A modified computer algorithm of that employed in [11] has been developed, correspond-
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θi max θi max 

i) ii) 
Figure 2: The direct singular configuration is obtained at the same pose regardless of the
magnitude of rp.

ing to the kinematics of the Tricept mechanism. The algorithm works by first discretizing
the workspace into a user-specified number of z-slices and ¥-meridians. At each z-slice,
the algorithm probes the boundaries of the workspace in ¥ different directions.

3.1 Reachable Workspace

Poses resulting in a real and positive solution to the inverse displacement problem in equa-
tion (16), and obtained without passing through either of the singular configurations dis-
cussed above, are included in the reachable workspace. In addition, since the Tricept’s
workspace theoretically extends to infinity in the z-direction, a realistic limit on the stroke
of the prismatic actuators must be imposed in order to obtain meaningful results. This
paper will limit the highest attainable elevation to zend = 1.
Angles Æ and Ø are omitted from this optimization study as it has already been shown in
[11] that the optimal configuration for a similar mechanism is symmetric, i.e., Æ = 120±

and Ø = °120±. Remaining architectural variables are the end effector radius rp, the base
platform radius rb, and the magnitude of vector, d. As Figure 2 shows, the magnitude
of rp has no influence on the size of the reachable workspace. In these depictions, solid
circles represent spherical joints, the empty circle is the universal joint, empty rectangles
are the passive prismatic joints, and actuated prismatic joints are represented by rectangles
with arrows inside them aligned with the respective line of action of the joints. The direct
singular configuration where one or more of the actuated limbs are parallel with the plane
defined by the three spherical joints on the end effector platform, is obtained at the same
pose, regardless of the magnitude of rp. Therefore, it will be set to rp = 1 and will be
omitted from this optimization study.
The monotonical influence (within the considered ranges) of the last two remaining vari-
ables rb and d on the reachable workspace size is depicted in Figure 3. In the first plot, @

2
S

@d2

(the second derivative of size with respect to change in d) is not constant nor monotonic,
as evidenced by the inflection point at d º 0.8. If d = rb, some points on the reachable
workspace boundary correspond to poses where both the direct singular configuration and
the passive limb’s singular configuration may exist simultaneously. At d ø rb, the manip-
ulator does not reach the passive limb’s singular configuration prior to the direct singular
configuration, when moving from the datum position. However, at d º 0.8, the manipula-
tor does begin to reach poses near the passive limb’s singular configuration (i.e., either µ1

or µ2 = 90±). In order to avoid these singular configurations, maximum values for µ1 and
µ2 have been set to approximately 88.5± in the algorithm determining the workspace size.
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Figure 3: Reachable workspace size as functions of d and rb. Default values are d = 0, and
rb = 1.
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Figure 4: The direct singular configuration is obtained at a) a larger rotation of the universal
joint with increasing magnitude of d and b) smaller rotation of the universal joint with
increasing magnitude of rb.

As indicated by the inflection point in Figure 3, the algorithm encounters this limit for µ1

and µ2 at d º 0.8,
Physical reasoning for the results in these plots are depicted in Figures 4a and 4b. As
shown in 4a, the singular configuration is reached at a pose where the rotation around the
universal joint (µ1max) is larger if the magnitude of d is also larger. The opposite effect, i.e.,
the reachable workspace size decreases, is realized by increasing the magnitude of the base
radius, rb (Figure 4b).

3.2 Dexterous Workspace

Mathematical definitions of dexterity have been discussed in [9]. In this work, both the
condition number and a maximum allowable singular value of the constrained Jacobian
matrix (JP) are used to define the dexterous workspace. These conditions guarantee that
the manipulator maintains similar motion ability in each of its degrees of freedom and these
motions are performed above a minimum acceptable velocity. In this way, the dexterous
workspace is limited to poses where the manipulator maintains a minimum yet similar level
of agility in each of its degrees of freedom.
Figure 5a depicts the dexterous workspace when defined by an arbitrarily chosen maximum
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Figure 5: Dexterous workspace defined by a) a maximum condition number of 12 and b)
both a maximum condition number of 12 and maximum singular value of 0.6. Architectural
parameters are rp = rb = 1 and d = 0.

condition number of 12. That is, only poses where moving in one direction requires a
minimum of 1/12 of the effort required to move in another direction are included. Singular
values æ in Figure 5a vary within the range 9.4087£ 10°6 ∑ æ ∑ 0.73796.
In Figure 5b, both a maximum condition number of 12 and maximum singular value, æ, of
0.6 are arbitrarily chosen to define the dexterous workspace. The result of Figure 5b has
a very simple explanation. First, let the angle between vectors ai and li be denoted by øi,
as in Figure 1b. Higher end effector velocities may be obtained when the actuated limb
has a high amount of leverage over the end effector platform, i.e., øi is near 180±. This
corresponds to lower elevations of the end effector platform, as depicted in Figure 5b.
Angles øi are very sensitive to the actuator displacement, and are an important feature in
understanding the results of Figure 6. For instance, Figures 3 and 4a demonstrate the ben-
efit of increasing the magnitude of d on the reachable workspace size. However, for poses
where µ1, or µ2 6= 0, this advantage is offset by the fact that as |d| is increased, the max-
imum difference between the angles øi in the three limbs, i.e. ¢ø = ømax ° ømin, also
increases. The difference in leverage each actuated limb has over the end effector plat-
form is analogous to the Jacobian matrix condition number. Therefore, although increasing
|d| nominally increases the reachable workspace size, it does not necessarily increase the
subset, the dexterous workspace size.
Similarly, increasing the magnitude of rp decreases angle ø in each limb, unless at the
workspace boundary as depicted in Figure 2. This corresponds to an increase in the singular
values of the Jacobian matrix. In addition, the difference in leverage, expressed by ¢ø ,
also increases. However, reducing rp may not always be beneficial as shown in Figure 6.
Although the leverage is increased as ø increases towards 180±, the pose of the manipulator
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Figure 6: The dexterous workspace size as functions of d, rp, and rb. Default values are
d = 0, rp = 0.1, and rb = 1.

appears closer to the direct singular configuration discussed earlier. This may explain the
apparent optimum value of rp ' 0.2 in this example.
Finally, as the magnitude of the base platform radius, rb is increased, the angle ø is also in-
creased for any pose. This corresponds to an ability to obtain higher end effector velocities
for given actuator velocities. As rb is increased ¢ø decreases, resulting in a lower condi-
tion number. Although increasing the magnitude of rb decreases the reachable workspace
size, it increases the dexterous workspace size. It is logical to assume that at some point,
the rate of loss in reachable workspace size will in turn correspond to a loss in dexterous
workspace size, if the range of rb in Figure 6 had been increased.

4 CONCLUSIONS

The inverse displacement solution for the Tricept mechanism where the independent de-
grees of freedom are defined as a translation along the z-axis and rotations around the x

and y-axes has been provided. An alternate solution to the inverse displacement problem
(also provided) shows that the manipulator pose may also be uniquely defined using the
z-coordinates of three different points on the end effector platform.
A 3 £ 9 Jacobian matrix is formulated based on the method introduced in [8]. A 9 £ 3
constraining matrix may then be used to reduce the Jacobian to a square 3£ 3. The entries
of the constraining matrix are formulated using partial derivatives of the alternative inverse
displacement solution. The resulting constrained Jacobian matrix relates the z-coordinate
velocities of the three end effector points to the actuator velocities. The condition number
and singular values of this matrix may further be used to define the dexterous workspace.
The architectural variables of rb (base platform radius) and d (offset within the passive leg)
are identified as having an influence on the reachable workspace size. The third archi-
tectural variable, rp (moving platform radius), is shown to have no influence. Within the
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ranges tested, reachable workspace size is largest when small values of rb and large values
of d are used. The dexterous workspace is defined by manipulator poses where high end
effector velocities may be obtained given a set of actuator velocities and furthermore, that
this ability is common in each of the degrees of freedom. This is defined mathematically
as poses where the condition number of the 3 £ 3 constrained Jacobian matrix is below
a specified limit, and where all singular values of the square, constrained Jacobian matrix
(JP) must be below a specified threshold. All three architectural variables are found to
have an influence on the dexterous workspace size. Their exact influence has been demon-
strated. The influence of each variable was studied on an independent basis. Multivariable
optimization may produce a different set of optimum architectural parameters.
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