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Abstract: The four-bar linkages are widely used in both planar and spatial mechanisms and robotic 

manipulators. Static force analysis of the four-bar mechanisms subjected to external loading working 

under gravitational forces is formulated in this article. The formulation is based on structural matrix force 

and stiffness methods with the free-body diagrams for each of the links considered. The four-bar 

mechanism considered is overdetermined as there are additional constraints compared to a statically 

determinate four-bar mechanism. A method of solution, based on the matrix force analysis, incorporating 

the flexibility of the mechanism is given. The methodology is simulated for a mechanism with a planar 

four-bar linkage where the plane of motion could be varied by rotating about a revolute joint that connects 

the four-bar linkage to the base.   
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1. Introduction 
Four-bar mechanisms are of great importance in mechanism design since they are formed with the 

lowest number of links (bars) and they are one of the basic mechanisms used in obtaining more complex 
ones. For example, a widely used spatial four-bar mechanism consists of two spherical joints (S) and two 
revolute joints (R). This mechanism, which has a passive degree of freedom due to the spherical joint 
pair, can be used under spatial loading. The four-bar mechanisms, which have four revolute joints, are 
generally used for planar motion. The planar four-bar mechanism can be used spatially; however, the 
force analysis of the mechanism becomes overdetermined. To illustrate the problem, Grübler's equation 
for estimating the number of constraints, C, to be solved can be used: 
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where ∑ n  is the total number of links, j is the total number of joints, and fi is the degrees of freedom of 
joint i, and λ denotes the task space dimension, which is 3 for planar or spherical mechanisms and 6 for 
spatial mechanisms. Similarly, the number of force equations, E, can be calculated by: 

∑ −= )1( nE λ                        (2) 
Table 1 is prepared for the spatial and planar four-bar mechanisms and the planar four-bar 

mechanisms subjected to spatial loading. The equation for the idle degree of freedom in the spatial four-
bar mechanism is eliminated in calculating the number of equations in Table 1 since it does not affect the 
motion of the mechanism as long as it is not actuated. The planar four-bar and spatial four-bar 
mechanisms are determined mechanisms whereas the planar four-bar becomes overdetermined when it is 
subjected to spatial loading. In most publications on four-bar mechanisms, the loading out of the plane of 
motion are either not given or neglected in the force analysis of the mechanism, or spatial four-bar 
mechanisms are used. However, the planar four-bars are used in the spatial mechanisms, e.g., in robotic 
manipulators [1, 2]. 

Table 1 The static determinacy of the four-bar mechanisms. 

Mechanisms Number of Constraints, 
C 

Number or Equations, 
E 

Minimum Number of 
Actuation 

Planar four-bar (4R) 8 9 1 
Planar four-bar - under 
spatial loading (4R) 

20 18 1 

Spatial four-bar (2R, 2S) 16 17 1 
 

In this article, the static force analysis of a planar four-bar mechanism under spatial loading is 
considered. Although there are standard formulations of planar four-bar mechanisms under loading in the 
plane of the mechanism, or spatial four-bar mechanisms in spatial loading [3, 4], to the best of authors’ 
knowledge there are not many studies for solving the planar four-bar mechanisms under spatial loading. 
The static force equations are written in matrix form for a mechanism, which consists of a planar four-bar 
linkage and an additional revolute joint connecting the four-bar linkage to the base. The flexibility of the 
mechanism is considered to provide additional conditions for solving the forces acting on the mechanism 
as has been suggested in [5]. The method is based on the equilibrium conditions of the mechanism [6, 7]. 
Because the mechanism is overdetermined, there are more unknown forces than the number of force 
equations. The compatibility conditions of the mechanism, which relate the Cartesian deflections to the 
external wrench (force/moment) via the flexibility matrix of the mechanism and also the joint deflections 
to the joint wrenches via the joint flexibility, are introduced.  Simulations of the mechanism under 
different external wrenches are performed within the working range of the mechanism and the required 
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driving torques are plotted for two cases.  
2. Static Force Analysis 

In this section, the static force equations of the mechanism shown in Figure 1(a) are given. This 
mechanism consists of a planar parallelogram linkage and a link that connects the parallelogram to the 
base with a revolute joint. The motion of the mechanism resembles the spatial four-bar (2R-2S) when its 
passive degree of freedom is actuated and the revolute joint pair, which provide the passive degree of 
freedom, is bifurcated [8]. In addition, the revolute joints, which would provide rotational freedom about 
the axes of links 3 and 4 (Figure 1(a)) are eliminated. The force equations are derived for each link and 
arranged for solving under given external loading. 

 

 
 

(a) (b) 
Figure 1(a) A simple mechanism which incorporates four-bar linkage, (b) Zero configuration of the mechanism. 

The zero configuration indicating reference frames 0, 1, 2 and 3 attached to links 1, 2, 3, and 5 are 
shown in Figure 1(b). The Denavit-Hartenberg parameters [9] of the mechanism are listed in Table 2 
where θi and di correspond to the rotation and translation about 1−ik

r
, and ai and αi represent the effective 

link length and twist angle about ii
r

, respectively. 
Additional reference frames are employed to formulate the motion of link 4 relative to link 2 (frame 

5), and link 5 relative to link 4 (frame 4). The relative joint angles between these reference frames are the 
same as angles θ1 and θ3, respectively, due to the usage of the parallelogram mechanism. Detailed 
kinematic analysis of this mechanism is reported in [10].  

Table 2 Denavit-Hartenberg parameters. 

Link θi di (m) ai (m) αi 

2 θ1 d1 = 0.152 0 π/2 

3 θ2 0 a2 = 0.610 0 

5 θ3 0 0 ─ π/2 
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The kinematic and static force equations of the mechanism can be modelled by using the parameters 
in Table 2. Static force equations are obtained by considering the free-body diagrams of each link, which 
are shown in Figures 2(a) - (d) respectively.  The force equation for link i, i = 2, ..., 5 is formulated as: 

∑ =+ 0Fg ji

rr
im                      (3) 

 

  
(a) (b) 

 
(c) (d) 

Figure 2Free-body diagrams of (a) link 2, (b) link 5, (c) link 4, and (d) link 3. 

and the moment equation about the mass center of the link is: 

∑ =+∑ × 0MFr jijij

rrr                             (4) 

The set of static force/moment equations of the mechanism can be obtained in the form of equations 
(3) and (4) after resolving the force/moment equations into the body frames of each link respectively. 

gext WWWT +=                      (5) 

where the term T on the left-hand side of the equation is a 24×27 transformation matrix formulated as: 
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and the submatrices j)(i,
mT  are based on the screw (adjoint) transformations which transform a given 

wrench in frame j to frame i given as: 
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and )(i,
mT i  corresponds to a matrix of dimension 6×6 which is used to transform a wrench acting in one 

point to another point in the same reference frame i, ),( jiR  is the 3×3 rotation matrix from frame i to 
frame j, and 

jiOOr~  is the skew symmetric matrix of the position vector defining origin of frame j with 
respect to frame i. The transformation matrix of equation (7) is used for the reaction wrenches of the 
actuated joints, and for the passive joints. The column of the transformation matrix corresponding to the 
axis of a passive joint is deleted because the moment about the passive revolute joint axis becomes zero.  

In equation (5), the term W contains the reaction wrenches and driving torques and is given as: 

( ) ( ) ( ) ( ) ( )[ ]TTTTTT (0)
12

(1)
23
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24
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45

(2)
35 WWWWWW 43=                              (8) 

where (k)
ijW  represents the wrench acting by link i on link j, expressed in reference frame k. For the 

reaction wrenches due to passive revolute joints, because the moment about the joint axis causes the 
rotation of the joint, hence there is no reaction moment about the joint axis and )(W k

ij has the following 
form: 

( ) ( )[ ] [ ]Tijijijijij

TTk
ij
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ij
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and for the active revolute joints m, m = 1, 2, the joint torques can be combined with the reaction 
wrenches as: 
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In equation (5), the term Wext is because of the external wrench acting on link 5 of the mechanism 
resolved into the body frames for each link due to the reaction forces, and is given as: 
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The second term on the right-hand side of equation (5), Wg, includes the gravity forces acting on the mass 
center of each link, which are constant in the fixed frame, resolved into the body frames of the links: 

[ ]( ) [ ]( ) [ ]( ) [ ]( )[ ]TTTT
m

TTT
m

TTT
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Equation (5) is overdetermined, i.e., there are more unknown forces/moments than the number of 
equations. To solve for the unknown forces/moments, the flexibility of the links and joints could be taken 
into account to formulate the force-deflection relations (known as the compatibility equations).  Then, 
equation (5) combined with these compatibility equations can be solved by matrix inversion. While this 
solution can be performed based on the Jordan elimination techniques, or other numerically efficient 
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methods, a modified matrix force method is used.  
Equation (5) is decomposed into force and moment equations, then one of the forces is chosen as the 

independent force, and the other reaction forces and moments are written in terms of the independent 
force. The resultant set of equations reduces from 24 to 12 equations for 15 unknowns. The difference 
between the number of unknowns and the number of equations is three. The three unknowns will be 
referred to as “redundant forces/moments” in the following sections. This reduction also facilitates 
selection of the flexible members of the mechanism in the next section when solving for the forces. It 
should be noted that the reduction could affect the flexibility matrix of the mechanism since the reduction 
of the number of unknowns also reduces the flexibility matrix of the link and some of the coupling terms 
which relate the unknown forces/moments to the deflection of the links. Choosing (2)F35  as the 
independent force to be kept, the other forces can be determined as: 

(3)
ext
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The static equation of the mechanism reduces to the following form: 
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where the term on the left-hand side of equation (17) includes the unknown forces/moments and driving 
torques, the first term on the right-hand side is the effort of the external wrench on the mechanism and the 
second term is the effect of the gravity on the mechanism. The terms in equation (17) are given as: 
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where u is a 15×1 vector whose components are defined in equations (8) through (10); 
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Matrices I and I2 are 3×3 and 3×2 identity matrices, where a column of I2 corresponding to a passive joint 
is deleted. Matrix ),(

2
jiR is the rotation matrix from frame i to frame j with the column corresponding to the 

passive joint freedom deleted. The expressions for matrices u
extJ , 

i
u
gJ , i = 2, …, 5, can be calculated as: 
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where 
jiOGr~  is the skew symmetric matrix of the mass center position of link i with respect to the origin of 

the reference frame j, and 
4

~
COr  corresponds to the position of the point of application of the external 

wrench, point C, relative to the origin of the coordinate frame 4, which can be seen in Figure 2. 
The dimensions of the gravity related Jacobians 

i
u
gJ , are 12×3 whereas the dimension of the Jacobian 

related to the external force, u
extJ , is 12×6. The static force equation (17) can be solved by considering the 

flexibility of the mechanism, which is discussed in Section 3. 
3. Solution of Forces 

In this section the flexibility of the mechanism is considered first as the solution method is based on 
the flexibility matrix of the mechanism. The links of the mechanism are modelled as the beams and the 
flexibility matrix of the beams can be found in the literature [6]. The compatibility conditions, formulated 
as three equations, are used to solve for the three redundant forces/moments, by means of which three 
additional virtual freedoms are introduced. The redundant forces/moments are chosen so that equation 
(17) can be written in the following form by grouping the remaining unknown forces/moments together 
(known as the primary structure), denoted by up, and the redundant forces/moments together (known as 
the secondary structure), denoted by us, as: 

( ) ss
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where [ ]u
s

u
p

u JJJ = . 

Once the redundant forces/moments are calculated from the compatibility conditions, the statically 
determined forces can be solved directly from equation (25). The choice of redundant forces is made such 
that the flexibility matrix corresponding to the redundant forces is diagonal, or as close to diagonal as 
possible, because choosing a diagonal matrix reduces the possibility of the flexibility matrix related to the 
redundant forces being ill conditioned. The flexibility matrix of the primary structure is formulated by 
using the flexibility of the links and the actuated joints. The reaction moments between the base and link 
2 are excluded from equation (25) since generally it is not necessary to calculate them [3, 4]. Thus, 
equation (25) is reduced into 10 equations for 13 unknowns. 

The flexibility equation for each of the links is given by: 
(k)(k) Wcδ i=                     (26) 

where (k)δ is the deflection of the link in the coordinate frame k, ci is the compliance matrix of link i and 
(k)W is the reaction wrench of the link. This equation can be used in obtaining the compliance matrix of 

each link under the reaction forces. 
The flexibility matrices of the links, modelled as beams, are taken from [6]. After rearranging, the 

resultant flexibility matrix for the secondary structure is given as: 
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where d5 is the length of link 5 which is twice the length of d1, G  is the shear modulus of elasticity, Ji is 
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the polar moment of inertia of link i. The diagonal entries of Cs correspond to the redundant moments 
chosen as )2(

35x
M , )3(

45z
M , and )4(

24x
M . The flexibility matrix for the primary structure denoted by Cp, which 

is a 10×10 matrix, is in the following form: 
( )2124 mmp ccdiag ccccC 53=                              (28) 

where cmi  is the compliance of  actuated joint i [11], and the compliance matrix ci of link i, i = 2, …, 5, 
are: 

¸
¸
¹

·
¨
¨
©

§
=

yx IE
d

IE
ddiag 11

2
22c                               (29) 

»
»
»
»
»
»
»
»
»
»

¼

º

«
«
«
«
«
«
«
«
«
«

¬

ª

−

−
=

yy

yy

z

IE
a

IE
a

IE
a

IE
a

IE
a

EA
a

3
2

3
2

3
2

3
2

3
2

2

2

2
00

23
00

00
3

0

000

3c                       (30) 

yIE
ac 4
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yIE
dc 5

5 =                     (32)

  
and E is the Young’s modulus of elasticity, Ai is the cross-sectional area of link i, and Ix, Iy, Iz are the 
moments of inertia of the corresponding link about the principal axes of the link.  

The total strain energy of the mechanism can be written in the following form: 

s
T

p
TU δuδu sp 2

1
2
1

+=                   (33) 

where δp and δs are respectively the 10×1 and 3×1  infinitesimal displacement vectors of the primary and 
secondary structures expressed in the body coordinate frames for the link, where δs includes torsional 
deflections of links 3, 4 and 5 about their axes. The compliance matrix of the primary structure (and 
secondary structure) that relates the forces acting on the links to the infinitesimal displacements has the 
following form: 

uCδ =                                      (34) 
Substituting equation (34) in equation (33), the strain energy of the mechanism could be calculated as: 

sspp uCuuCu s
T

p
TU

2
1

2
1

+=                   (35) 

The strain energy can be written in terms of external wrenches, gravity forces and redundant internal 
moments by substituting equation (25) for up in equation (35). By differentiating equation (35) with 
respect to these forces/moments, it is possible to obtain a relation between the infinitesimal displacements 
corresponding to the external wrench and the infinitesimal displacement corresponding to the secondary 
structure as: 
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where ∆  is the infinitesimal displacement of the mechanism under the external wrench Wext in the fixed 
frame while δs includes the deflection of the secondary mechanism, corresponding to )2(

35x
M , )3(

45z
M ,  and 

)4(
24x

M , expressed in the body coordinate frames of links 3, 5, and 4, respectively. The submatrices cij, i = 
1, 2 and j = 1, 2, and cgpk, and cgsk k = 2, …, 5, are calculated as: 
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The first term on the right-hand side of equation (36) is the flexibility of the mechanism due to 
external loading and the redundant moments while the second term provides additional flexibility due to 
the gravity forces acting on the mechanism [12]. Calculating the compliance matrices, the redundant 
forces/moments can be solved by using the compatibility equation (lower part of equation (36) which 
corresponds to the twisting moments of links 3, 4 and 5) when the deflections of the secondary structure 
are set to zero, i.e., δs = 0 [6]: 
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and the remaining forces and driving torques can be found by using equation (25). It is worth mentioning 
that the formulated compliance matrix of the mechanism using the structural matrix force and stiffness 
methods has similar form to the one derived in [12], while in [12] only the actuator flexibilities of a 
parallel manipulator are modelled (and the link flexibilities are neglected) and the gravitational and 
reaction forces/moments are included. 
4. Simulation Results 

The simulation of the mechanism is performed to solve for the driving torques within the working 
range of the mechanism, i.e., for 00 < θ1 < 360o and −900 < θ2 < 90o. The links are considered as hollow 
steel tubes with rectangular cross sections (density of 7800 kg/m3, E = 1.903·1011 Pa, G = 7.309·1010 Pa). 
The simulation results are given in Figures 3 and 4, for a zero external wrench and a nonzero external 
wrench of [ ]6641.131.1323=extW  in the body coordinate frame of link 5, respectively. A step 
size of 4o and 1o are used for θ1 and θ2, respectively. Very high driving torques are observed along θ2 = 
±90˚ which correspond to the singularity of the parallelogram.  For illustration purposes, these high 
values are not shown in the contour plots of Figures 3 and 4. 

In Figure 3, which corresponds to zero external wrench, the plot of driving force indicates symmetry 
due to the symmetric configuration of the mechanism.  In this figure, the maximum torques for the base 
motor (links 2) are at around (θ1, θ2) = (90˚, 0˚) and (270˚, 0˚), and for the motor which actuates link 3 
(the parallelogram mechanism) are around (θ1, θ2) = (0˚, ±90˚) and (180˚, ±90˚). In Figure 4, which 
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corresponds to nonzero external wrench, the maximum torques are at (270˚, 0˚) for the base motor and 
(0˚, ±90˚) for the motor which actuates the parallelogram mechanism. The largest driving torques occur at 
the positions when the gravity forces create the maximum moment about the axis of the corresponding 
actuated joint in the case of zero external force (Figure 3). The plot of the driving torques look different in 
the case of an external wrench, however, the maximum driving torques occur in the same positions as that 
of the zero gravity case. 

 

  
(a) (b) 

Figure 3 Simulation results: The driving torque for (a) the base joint, (b) the parallelogram mechanism. 

  
(a) (b) 

Figure 4 Simulation results:  The driving torques for (a) the base joint (b) the parallelogram mechanism. 

The simulation results are verified by using the pseudoinverse solution of equation (5) to calculate the 
minimum norm solution of joint torques for a given external wrenches, which is frequently used in 
robotics for redundant manipulators. Specifically, the weighted generalized pseudoinverse, which is based 
on the minimum strain energy for the mechanism, is considered using the following formula: 

Minimize uδT

2
1  subjected to  k

u WuJ =                (44) 

where kW  includes the effect of gravity and external wrench. The weighted right pseudoinverse solution 
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employing the compliance matrix of the mechanism in joint space is obtained as in [13]: 

k
# WJu =                     (45) 

and 

( ) ( )( ) 1
1#

−
−=

TuuTu JCJJCJ                   (46) 

The solution given in equation (45) is the particular solution for the given external wrench and is 
simulated under the same conditions as of the matrix force method. The same results for the driving 
torques as in Figures 3 and 4 are obtained. This result is specific to this mechanism, as the internal forces 
are also checked for both methods. The internal forces/moments for two poses of ((θ1, θ2) = (90º,0) and 
(45º,45º)), for the case of zero external wrench are listed in Table 3. As can be seen from Table 3, while 
the driving torques are the same, the reaction forces/moments differ from each other. This is an expected 
result since the solution of the optimized generalized inverse depends on the metric used to solve the 
problem while the matrix force method relies on the compatibility equations. 

 
Table 3 Driving Torques and Internal Forces/Moments at two different positions (Wext = 0) 

Matrix Force Method Weighted Generalized 
Pseudoinverse 

 

(θ1,θ2) = (90º,0) (θ1,θ2) = (45º,45º) (θ1,θ2) = (90º,0) (θ1,θ2) = (45º,45º) 
τ1 0 4.641 0 4.641 Driving  

Torques 
(Nm) τ2 9.281 4.641 9.281 4.641 

)2(
35x

M  −0.409 −0.398 −0.59 −0.414 
)3(

45 z
M  0.845 0.478 0.202 0.438 

)4(
24x

M  −0.218 0.1 −0.635 0.1146 
(2)

35x
F  0 2.759 0 2.759 

(2)
35y

F  0 4.854 0 4.854 

(2)
35z

F  0.688 −0.10 1.923 −0.09 
)2(

35y
M  −0.845 −0.278 −0.203 −0.205 

)3(
45x

M  −0.440 −0.336 −0.635 −0.276 
)4(

24 y
M  7.181 4.6996 7.293 4.634 

(1)
23x

M  −0.409 −1.809 −0.590 −1.868 

Internal Forces 
(N) and 

Moments (Nm) 
for 

Secondary 
Structure and 

Primary 
Structure 

 

(1)
23y

M  2.099 1.247 1.989  1.282 
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Conclusion 
In this article, the static force analysis of a mechanism, which incorporates a four-bar linkage, is 

formulated. The mechanism is overdetermined due to the spatial loading acting on it. To solve for the 
reaction forces and driving torques, the flexibility of the mechanism is considered. From the strain energy 
equation of the mechanism, the flexibility matrices, which relate the deflection of the mechanism and the 
deflection of the secondary structure to the external wrench, redundant forces/moments and the gravity 
forces, are derived and are used to solve for the redundant forces/moments. Then the static force 
equations for the primary mechanism are used to find the driving torques. The simulations are performed 
to estimate the driving torques necessary for the mechanism for different external loading. The 
verification of the simulations is performed by employing the particular solution of the generalized 
weighted pseudoinverses. 
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