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Abstract — A single degree-of-freedom (DoF) mechanical model is considered to analyze the
stability of unidirectional digital force control that makes it possible to establish an analytical
solution procedure. The stability of the proportional-derivative (PD) force control strategy
is discussed. The frequency of the arising vibrations along the stability limits are also
determined as a function of the sampling frequency of the digital controller. The stability
charts clearly show the range of applicability of the digital PD force control in practical
tasks.

1 Introduction

It is a well-known phenomenon that the digitally controlled robots have vibration problems
when they are in contact with the environment and force control is applied on them. The
control design of these robotic systems usually employs continuous-time approaches and
models. Recently published books about robotic force control [1, 2| present investigations
only for the case of continuous-time force control of robotic manipulators. In addition, basic
control textbooks (like [3, 4]) usually determine the sampling period of a digital controller
with the help of continuous time arguments. Using the frequency response bandwidth or
the crossover frequency of the continuous-time system, these books suggest to determine an
appropriate (sufficiently small) sampling period for the discrete time realization. Certainly,
these rules of thumb work properly with most of the systems. However, in case of a rigid
mechanical system (e.g. an industrial robot touching a turbine blade) with a small effective
damping in the force controlled direction, these rules do not ensure stability. Experiments
show that the digital realization of analog control algorithms often leads to instability, and
the digitally controlled system starts to oscillate at a relatively low frequency [5]. It depends
on the control and mechanical parameters of the system whether a control algorithm with
a certain sampling frequency can be considered continuous, or the digital effects have an
essential role in the dynamic behavior.

In this paper, the discrete-time stability and vibrations of a single DoF robot model with
digital PD force control is presented. Particular attention has been paid to the effects of the



derivative gain to investigate whether derivative feedback can or should be included in the
force control of robots. Results are given in the form of stability charts in the parameter
space of the sampling time, the control gains and the mechanical parameters.

2 Mechanical model

Figure 1 shows a single DoF model that can serve to study the behavior of a robotic arm with
unidirectional force control. The equivalent mass m and stiffness k represent the inertia and
stiffness of the robot and the environment in the force controlled direction. The generalized
force () represents the effects of the joint drives, while C' denotes the magnitude of the
effective Coulomb friction force. These parameters can be calculated using the constraint
Jacobian representing the force controlled direction, and the mass and stiffness matrices of
the robot [6].
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Figure 1: Single DoF model of a force controlled robot

Thus, considering a PD force controller, the equation of motion of the model shown in
Figure 1 has the form

mi(t) + Csgni(t) + kz(t) = Q(t)

: 1
Q(t) = Fin(t) — P(En(t) — Fa) = DEn(1) W

where P and D are the proportional and derivative feedback gains. In addition,
F,.(t) = kx(t) denotes the measured force, while F; = kz, stands for the desired con-
tact force. Variable y denotes a small perturbation around the desired position x4 is to be
used later in Section 3.

3 Stability analysis

For the case of continuous-time force control, it can easily be shown that the model presented
in Figure 1 always results in an asymptotically stable behavior for any positive gains P > 0,
D > 0. The steady state force error can be calculated by the simple formula AF = C/P.
Thus, the higher the proportional gain is the smaller the force error becomes. On the other
hand, a PD digital force control for the same model can have a very different behavior, where



the stability and dynamic performance characteristics are determined by the control gains,
the sampling frequency and the mechanical parameters of the system.

According to [3, 4] and [5] the stability analysis of the discrete-time system can be carried
out via the construction of a discrete map of the state variables. For this calculation, we
neglect dry friction from the model, and a zero-order-hold (ZOH) is used to model the
sampling of the digital controller. In addition, a perturbation y is introduced around the
desired equilibrium position z4 with x(t) = x4 + y(t). Then, using the state variable vector
y = [y, 9|7, the equation of motion (1) for the nth sampling period can be rewritten in the
form

§(t) = Ay(t) + By((n—1)h) , t€ [nh, (n+1)h) , n=0,1,2,... (2)
where h is the sampling time of the digital controller and the coefficient matrices are
0 1 0 0
A—{_wg 0] and B_{(l—P)wﬁ —Dwﬁ]' (3)

Here, the natural angular frequency of the uncontrolled system is denoted by w, = \/k/m.
Introduce also the notation ¢,, = nh for the nth sampling instant and let the 4 dimensional
“discrete” state vector be z,,1 = [Yni1,¥n]?. Then, the solution of equation (2) yields the
discrete mapping between consecutive states as follows

¢ T
Zpi1 = Wz,, W= [ I 0o } where
N cos(wyph) wl—nsin(wnh)
== [ wpsin(wyh)  cos(wyh) | (4)

T = fheA’TdTB _ [ (1 —cos(wyh))(1 = P) —(1 — cos(wyh))D ] ’

wy sin(wyh)(1 — P) —wy sin(wyh) D

and I is the identity matrix. The substitution of the standard exponential trial solution
z, = ce into the difference equation (4) yields the characteristic polynomial

I - W)e=0 = pil) = det(Tu — W) (5)

where ¢ is a kind of discrete vibration mode vector and p = exp(\) is the so-called charac-
teristic multiplier. By expanding p,(p), and considering the expressions of equation (4), the
characteristic equation can be obtained as

aop* 4 ayp® + agp® 4+ asp =0, (6)
with the coeflicients

ag =1,

a; = —2cos(wyh), (7)
as = Dwy sin(wph) — (1 — P)(1 — cos(wyh)) + 1,

a3 = —Duwy, sin(wyh) — (1 — P)(1 — cos(wyh)) .



Obviously, the zero trivial solution of equation (2), which corresponds to the desired
contact force of the control task, is asymptotically stable if and only if all the roots of the
characteristic equation (6) are inside the unit circle of the complex plane. This can directly
be checked by Jury’s test, which is the discrete-time analog of the well known Routh-Hurwitz
criterion [3|. The resulting stability criteria are

c1 =pa(1) = agp + a1 + az + az = 2(1 — cos(wnh))P > 0,
co =(—1)*py(—1) = ag — ay + ay — az = 2 + 2 cos(wyh) + 2sin(wyh)w, D >0, (8)
c3 =1 — ay + aza; — a3 = —(1 — cos(wyh))?>P? + (2d sin(wyh) — 4 cos(wyh) + 1)x

X (1 = cos(wyh))P 4 2(cos(wyh) — dsin(wyh))(d sin(wyh) + 3(1 — cos(wyh))) > 0.

There are four physical parameters in (8) that can be collected into three independent di-
mensionless variables. One is the proportional gain P, second is expression wy,h/(27), which
is just the ratio of the natural frequency of the uncontrolled system and the sampling fre-
quency 1/h, and third is the dimensionless derivative gain d = Dw,,. Using these parameters,
the stability charts corresponding to the conditions ¢; > 0, 7 = 1,2, 3 are shown in Figure 2.
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Figure 2: Stability and vibration frequency charts (stable domains are shaded)

According to this figure and recalling that the continuous-time system with PD force
controller is stable for any positive gain values, the main difference between the continuous-
and discrete-time controllers is apparent. The stable domain of the control parameters is no
longer infinite and the maximal proportional gain within the limits of stability depends on
the frequency ratio w,h/(27) and the applied differential gain d. The disjoint structure of
these charts illustrates well the intricate dynamic behavior of discrete time systems and shows
that there are some ranges of mechanical parameters where no stable control is possible.
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In addition, the frequencies of the vibrations developed along the stability boundaries
are calculated numerically and presented with respect to the sampling frequency above the
corresponding stability chart. The ratio of the frequency of possible arising vibrations and
the sampling frequency is called the relative vibration frequency and it is denoted by f,;.
Figure 2 shows that f,., < 1/2 for all the values of the control gains. Thus, in case of losing
stability, the system will start to oscillate with a relatively low vibration frequency. The
frequency of possible arising vibrations will be always less than the half of the sampling
frequency.

4 Conclusions

In this paper, the discrete-time stability and the arising vibrations of mechanical systems sub-
jected to digital force control were investigated with closed form calculations. The discrete-
time nature of the force control causes an intricate dynamic behavior. Many undesired
events in force controlled systems (e.g. instability, low frequency oscillations) are caused by
the discrete-time nature of the controller. It has been known that the proportional gains
can have finite values only in the presence any finite sampling time. The literature provided
upper estimations for these sampling periods without paying attention to the possible peri-
odic nature of the stability charts with respect to the frequency ratio of the sampling and
the natural frequencies.

By adding a derivative gain, the proportional gain can be further increased within the
limits of stability to minimize the steady state force error. However, because the stable
domain is very narrow for high values of the proportional gain, the system becomes very
sensitive for the relative tuning of the sampling and natural frequencies and can easily lose
stability if small variations occur in the parameters. The stability chart (see Figure 2)
actually brakes up to disjoint domains. These are the important effects of the derivative
gain.

The derivative gain is commonly used in position control, but it has usually been avoided
in force control without any analytical explanation. This paper gives analytical results which
show that the use of a derivative gain reduces the area of the stable domains in certain regions
of the stability charts. This can be the main reason why the derivative gain is rarely used
in digital force control applications.
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