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ABSTRACT
This work investigates the force-moment capabilities of di↵erent redundant-actuation configu-
rations for planar-parallel manipulators. A previously developed methodology for determining
the force-moment capabilities of redundantly-actuated parallel manipulators using optimization
and scaling factors is employed. The results show that di↵erent, symmetric redundant-actuation
schemes yield substantial variations in the force-moment capabilities for the three branch, three-
revolute joints per branch (3-RRR) manipulator. Configurations where all base and wrist joints
are actuated or all elbow and wrist joints are actuated yielded better force-moment capabilities
when compared to the actuation configuration where all base and elbow joints are actuated. The
biggest di↵erence in terms of force-moment capabilities was the maximum moment that could be
sustained. The actuation configuration where all base and elbow joints actuated yielded the lowest
maximum moment that could be sustained.

1. INTRODUCTION

This paper investigates the force-moment capabilities of di↵erent, symmetric, redundant-actuation
configurations for planar-parallel manipulators. The force-moment capability of a manipulator is
defined as the maximum wrench that can be applied (or sustained) by a manipulator for a given
pose based on the limits of its actuators.

Redundant actuation in parallel manipulators can be divided into three categories. The first
category features actuating some of the passive joints within the branches of a parallel manipulator.
For example, consider the three-branch planar parallel manipulator with three-revolute joints per
branch, the 3-RRR device [1]. For a non-redundant device, one joint per branch must be actuated.
By actuating an additional joint in one or more branches, the manipulator is redundantly actuated.
The second category of redundant manipulators are those that feature additional branches beyond
the minimum necessary to actuate the device. Again considering the 3-RRR device, if an additional
branch (featuring an actuated joint within the branch) is added to the device, the device would
be redundantly actuated. The third category of redundantly-actuated parallel manipulators are
devices that are a hybrid of the first two categories. This paper focuses on the first category,
but the presented methodology could easily be applied to manipulators of the second and third
category.

With redundant actuation, the solution to the inverse force problem (given the desired wrench
to be applied by the platform, what are the required joint torques/forces) no longer has a unique
solution. An infinity of possible solutions exists to the inverse force problem. This infinity of
possible solutions allows the joint torques/forces to be optimized. The ability to optimize the



joint torques/forces and the elimination of force-unconstrained configurations1 through redundant
actuation has led to a growing interest in redundantly-actuated parallel manipulators (see for
example [2–17]).

The goal of this paper is to investigate the force-moment capabilities of various redundant-
actuation configurations for planar-parallel manipulators. To determine the force-moment capabil-
ities, a methodology developed by Nokleby et al. [17] of determining the force-moment capabilities
of redundantly-actuated parallel manipulators using scaling factors and optimization is employed.

To test the e↵ects of di↵erent redundant-actuation configurations, the 3-RRR manipulator
is used. Typically, the redundant-actuation configuration used for the 3-RRR manipulator is
one where the base and elbow joints of each branch are actuated. For simplicity, this actuation
configuration will be denoted 3-RRR, where the underline indicates that the first and second joints
of each branch are actuated. However, is this the best actuation scheme in terms of force-moment
capabilities? Perhaps, the 3-RRR or the 3-RRR actuation configurations may lead to better force-
moment capabilities. The goal of this paper is to answer the above question.

The paper first briefly summarizes the methodology of Nokleby et al. [17]. Next, the force-
moment capabilities for the 3-RRR, the 3-RRR, and the 3-RRR actuation configurations are pre-
sented. This is followed by a discussion of the results. The paper finishes with proposals for future
work and conclusions.

2. OPTIMIZATION-BASED METHODOLOGY FOR DETERMINING
FORCE-MOMENT CAPABILITIES USING SCALING FACTORS [17]

In the forward force (FF) problem for manipulators, the actuated joint torques or forces are
known and the output wrench is to be found. The output wrench modeled by the screw Fapp =�
fT; mT

 T can be calculated from:
Fapp = [$0][D]⌧ (1)

where ⌧ is a vector of the actuated joint torques or forces and [$0] is the matrix of associated
reciprocal screw quantities2. In equation (1), [D] is a diagonal matrix which converts the vector of
joint torques/forces to a vector of wrench intensities.

The inverse force (IF) problem solves for the actuated torques and forces required to sustain (or
apply) a known wrench, Fapp, for a given location and orientation of the end e↵ector. To determine
the force-moment capabilities, however, one wants to find the maximum possible magnitude of Fapp

for a desired wrench direction. The unit wrench $F will be used to represent the desired wrench
direction, therefore:

Fapp = fapp$F (2)

with fapp being the wrench intensity of Fapp. To generate a force-moment capability plot using
the IF solution, one needs to find the maximum wrench intensity, fapp, in order to maximize the
magnitude of Fapp, while still remaining within the torque/force limits of the actuated joints.

The first step is to find the vector of torques/forces, ⌧$F
, used to create the unit wrench $F in

the direction of the desired Fapp, such that:

$F = [$0][D]⌧$F
(3)

1
A force-unconstrained configuration is a configuration in which the platform of a parallel manipulator cannot

sustain or apply an arbitrary force and instantaneously gains an uncontrollable degree-of-freedom (DOF) of motion.
2
Screw coordinates, associated reciprocal screw quantities, and the force problem in terms of screw algebra are

described in Appendix A.



Referring to equation (3), the matrix formed by [$0][D] is not square for the redundant case
and an infinity of solutions exists to the IF problem. An optimization-based solution is necessary
to find the best ⌧$F

to use.
For redundantly-actuated manipulators, the solution to the IF problem can be broken into a

particular solution and a homogeneous solution:

⌧$F
= ⌧$Fparticular

+ ⌧$Fhomogeneous
(4)

The particular solution, ⌧$Fparticular
, satisfies:

[$0][D]⌧$Fparticular
= $F (5)

The homogeneous solution, ⌧$Fhomogeneous
, satisfies:

[$0][D]⌧$Fhomogeneous
= 0 (6)

which is the null-space solution.
For any solution of ⌧$Fparticular

, ⌧$Fhomogeneous
can be solved for using Singular Value Decomposi-

tion (SVD). Performing SVD on the matrix [$0][D] of size m ⇥ n and rank r yields the matrices
Sm⇥n, Um⇥m, and Vn⇥n. The matrix S is a diagonal matrix of the square roots of the non-zero
eigenvalues of

�
[$0][D]

� �
[$0][D]

�T and
�
[$0][D]

�T �[$0][D]
�
. The matrices U and V are both or-

thogonal matrices and provide bases for the four fundamental subspaces of [$0][D] [18]. The last
n�r columns of V span the null space of [$0][D] and are denoted V0. Therefore, the homogeneous
solution can be expressed as:

⌧$Fhomogeneous
= V0� (7)

where � is any (n � r) ⇥ 1 vector which is mapped by V0 into the null-space torque/force for the
given [$0][D]. Physically, the resultant ⌧$Fhomogeneous

is a set of actuator outputs which result in no
output wrench being applied by the manipulator. The torques/forces are such that they apply
what is referred to as an internal force.

Using the Moore-Penrose pseudo-inverse solution to find ⌧$Fparticular
, as it satisfies equation (5),

and equation (7) to find ⌧$Fhomogeneous
yields:

⌧$F
= ([$0][D])+$F + V0� (8)

To achieve the largest force capabilities requires finding the � that minimizes the maximum
absolute value of the normalized torque vector, where the normalized torque vector b⌧$F

is defined
as:

b⌧$F
=
n

· · · ⌧$Fji
⌧ji max

· · ·
o

(9)

This problem can be expressed as the optimization problem:

minimize f (�) = max
���b⌧$F

��� (10)

In order to ensure a continuous objective function, the objective function of equation (10) can
be approximated by taking a high p-norm of b⌧$F

. Therefore, the optimization problem becomes:

minimize f (�) =
��b⌧$F

��
p

(11)

For this work, the value of the p-norm was set to 100 and the optimization problem was solved using
the MATLAB r� Optimization Toolbox routine fminunc. The routine fminunc uses the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm with a mixed quadratic and cubic line
search to solve the unconstrained optimization problem [19].



Solving the optimization problem of equation (11) and substituting the solution into equation
(8) will yield an optimal ⌧$F

.
Since all maximum actuated joint torque and force limits, ⌧ji max, are known for all actuated

joints j of each branch i of the manipulator, scaling factors for each actuated joint can be found
using:

sfji =
����
⌧ji max

⌧$Fji

���� (12)

where sfji is the scaling factor and ⌧$Fji
is the torque/force of the jth actuated joint of the ith branch

for a unit wrench $F in the desired force direction. The scaling factors of equation (12) can be
placed in a set. The scaling factor (SF ) in this set with the minimum value is the maximum factor
which all joint torques/forces can be scaled by and still remain at or below their corresponding
maximum values, i.e.:

SF = min
ji

(sfji) (13)

The maximum wrench, Fapp, that can be applied in the direction $F is:

Fapp = SF [$0][D]⌧$F
(14)

Since [$0][D]⌧$F
generates the unit wrench $F, the maximum possible wrench intensity fapp of the

screw quantity Fapp is:
fapp = SF (15)

To create a force-moment capability plot using the IF solution, $F is varied through all possible
directions.

3. FORCE-MOMENT CAPABILITIES

The manipulator being considered is the three-branch, three-revolute joints per branch (3-
RRR), planar parallel manipulator. Figure 1 shows the layout of the 3-RRR manipulator. The
manipulator’s dimensions and actuation capabilities are modeled after the Reconfigurable Planar
Parallel Manipulator (RPPM) [20]. For the RPPM, the link lengths and platform edge lengths are
all equal to 0.200 m, i.e., ⇢1 to ⇢6 = l2 = l3 = 0.200 m and ↵ = 60�. The bases of the branches are
all 0.500 m apart from each other. The maximum torque capability for each actuated joint of the
RPPM is ±4.2 Nm.

The reference frame was selected to be coincident with frame 3 of branch 1 (see Figure 1). The
complete kinematic model used for the RPPM can be found in [17].

The unit wrench $F in the platform frame used to generate the force-moment capability plots
was defined as:

plat$F = {cos(�), sin(�), 0; 0, 0, mz}T

where � was varied between 0 and 2⇡ in increments of ⇡/360 and mz was varied between �15 Nm
and 15 Nm in a varied step size (see Table 1).

For the force-moment capability plots, three di↵erent actuation configurations were considered:
3-RRR; 3-RRR; and 3-RRR. For each actuation configuration, three orientations of the platform
were tested while the platform’s position was fixed at the centre of the manipulator’s workspace
(x0 = 0.250 m and y0 = 0.144 m). The platform orientations (�’s) used were �45�, 0, and 45�.

Figures 2, 3, and 4 present the force-moment capabilities for the three actuation configurations
and each of the three platform orientations. Figure 2 shows the force-moment capabilities when



Figure 1: The layout of the 3-RRR manipulator.

Table 1: Step sizes used for mz.
mz Range (Nm) mz Step Size (Nm)
�100.00 to �15.00 5.00
�15.00 to �1.00 0.50
�1.00 to �0.10 0.05
�0.10 to 0.00 0.005
0.00 to 0.10 0.005
0.10 to 1.00 0.05
1.00 to 15.00 0.50

15.00 to 100.00 5.00

� = �45�, Figure 3 shows the force-moment capabilities when � = 0, and Figure 4 shows the
force-moment capabilities when � = 45�. It is important to note that for Figures 2, 3, and 4 that
the scales used for the moments are not the same for the three di↵erent actuation configurations.

Table 2 shows the maximum force mangitude and the maximum moment that can be sustained
by each of the actuation configurations for each of the platform orientations.



(a) (b) (c)

Figure 2: Force-moment capabilities when � = �45�: a) 3-RRR configuration, b) 3-RRR config-
uration, c) 3-RRR configuration. Note that the first row of plots corresponds to +mz and the
second row of plots corresponds to �mz.

(a) (b) (c)

Figure 3: Force-moment capabilities when � = 0: a) 3-RRR configuration, b) 3-RRR configuration,
c) 3-RRR configuration. Note that the first row of plots corresponds to +mz and the second row
of plots corresponds to �mz.



(a) (b) (c)

Figure 4: Force-moment capabilities when � = 45�: a) 3-RRR configuration, b) 3-RRR configura-
tion, c) 3-RRR configuration. Note that the first row of plots corresponds to +mz and the second
row of plots corresponds to �mz.

Table 2: Maximum force magnitude and maximum moment.
Configuration � (�) Maximum Force Magnitude (N) Maximum Moment (Nm)

3-RRR �45 94.17 ±9.41
3-RRR �45 90.31 ±20.59
3-RRR �45 95.31 ±27.14
3-RRR 0 98.51 ±8.40
3-RRR 0 106.74 ±29.28
3-RRR 0 99.93 ±21.00
3-RRR 45 95.53 ±14.62
3-RRR 45 89.87 ±17.75
3-RRR 45 95.11 ±19.17



4. DISCUSSION

Referring to Table 2 and Figures 2, 3, and 4, it is clear that the force-moment capabilities di↵er
for the three di↵erent actuation configurations. In terms of the maximum magnitude of force that
can be sustained for the three configurations, there is not as much variance between the 3-RRR,
3-RRR, and 3-RRR configurations. For the three poses, the maximum magnitude of force varied
from 5% to 8%.

The real di↵erence in the capabilities of the three actuation configurations is in terms of the
maximum moments that can be sustained. Both the 3-RRR and 3-RRR configurations yielded
better moment capabilities than the 3-RRR configuration. For the � = �45� and the � = 0 poses,
the maximum moment that could be sustained for the 3-RRR and 3-RRR configurations was over
twice what could be sustained by the 3-RRR configuration.

The question posed at the start of the paper was: Is the 3-RRR configuration the best ac-
tuation scheme in terms of force-moment capabilities? Although the results are not exhaustive,
having only considered three di↵erent manipulator poses, the preliminary results indicate that the
3-RRR configuration may not be the best actuation scheme in terms of force-moment capabilities.
The results show that actuation configurations where the platform joints of each branch were ac-
tuated (3-RRR and 3-RRR) yielded better moment capabilities when compared to the actuation
configuration without the platform joints actuated (3-RRR). The di↵erences in force-moment capa-
bilities is most likely due to variations in the internal wrenches generated by the various redundant
actuation schemes.

One could raise the point that the 3-RRR actuation configuration would minimize the inertia
of the platform when compared to the 3-RRR and 3-RRR actuation configurations. This would
be true if the motors were mounted directly at the joints. However, if one were to base-mount all
motors and use chain or belt drives to actuate the non-base joints, this argument can easily be
dismissed.

5. FUTURE WORK

As pointed out, the results presented here are not exhaustive since only three poses were
considered. One avenue of future work would be a more exhaustive analysis of the force-moment
capabilties over a wider range of the manipulator’s workspace.

This work only foucssed on symmetric actuation configurations. Another possible topic for fu-
ture exploration would be to investigate the e↵ects of non-symmetric, redundant-actuation schemes.

A final topic of future research would be to investigate the force-moment capabilties of planar-
parallel manipulators incorporating additional redundant branches.

6. CONCLUSIONS

The force-moment capabilites of a redundantly-actuated, planar-parallel manipulator using
three di↵erent actuation configurations were investigated. It was shown that both the 3-RRR and
3-RRR actuation configurations yielded better force-moment capabilities when compared to the
3-RRR actuation configuration. The biggest di↵erence in terms of force-moment capabilty was the
maximum moment that could be sustained, with the 3-RRR and 3-RRR actuation configurations
being able to sustain over twice the maximum moment of the 3-RRR actuation configuration for
certain poses.
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APPENDIX A: PARALLEL MANIPULATOR KINEMATICS USING SCREW AL-
GEBRA 3

This appendix presents an overview of the use of screw algebra in parallel manipulator kine-
matics. The reader is referred to the works of Ball [21], Hunt [22], and Bottema and Roth [23] for
more detailed information on screw theory.

Screws

Screw Coordinates, Plücker Coordinates, and Pitch

A screw (S) is a line in space having an associated linear pitch. Screws can be represented as:

S =
⇢

s
so

�
= �

⇢
l

lo + pl

�
(16)

where s and so are the screw coordinates, l and lo are the Plücker coordinates of the line, � is an
associated magnitude, and p is the pitch of the screw [22, 24]. The pitch of a screw can be found
from:

p =
s · so

ksk
A screw is said to be a unit or normalized screw ($) if ksk = 1 or in the case where s = 03x1, if
ksok = 1 [24].

For manipulators, a revolute joint can be represented by a zero-pitch unit screw $rev= { l
T; l T

o }
T and a prismatic joint can be represented by an infinite-pitch unit screw which when

normalized to the 1-pitch gives $pris= {0T
3x1; l T}T.

The screw coordinates of the joints of a manipulator can be found from:

ref$ji =
⇢

refbzji
refbzji ⇥ref rji!pee

�

revolute

or =
⇢

03x1
refbzji

�

prismatic

(17)

where bzji denotes the unit vector of the jth joint axis direction of the ith branch, pee denotes a point
coincident with the origin of Fref and attached to the end-e↵ector, and rji!pee denotes a vector
from a point on the axis of joint ji to the point pee. Note that for zero-pitch and infinite-pitch
unit screws, the screw coordinates are equivalent to the Plücker coordinates.

Screw Transformations

A screw transformation is defined as:

refa
refb

TS =

"
refa
refb

R 03x3
refaepoa!ob

refa
refb

R refa
refb

R

#
(18)

where refa
refb

R is a 3x3 rotation matrix and refaepoa!ob is a 3x3 cross product skew-symmetric matrix
based on the components of a vector, refapoa!ob = refa{pxoa!ob

, pyoa!ob
, pzoa!ob

}T, from the origin
of Frefa to the origin of Frefb

. The cross product skew-symmetric matrix refaepoa!ob is:

refaepoa!ob =

2

4
0 �pzoa!ob

pyoa!ob

pzoa!ob
0 �pxoa!ob

�pyoa!ob
pxoa!ob

0

3

5 (19)

3
This appendix originally appeared in [17].



Reciprocal Screws

Let the screw quantity A = {aT; aT
o }T represent the velocity of a body and the screw quantity

B = {bT; bT
o }T represent a wrench acting on the body. If the power developed by wrench B

acting on the body moving with velocity A is zero, the screw quantities A and B are said to be
reciprocal to one another [22]. Mathematically, the two screws, A and B, are reciprocal if their
reciprocal product is zero:

A ~ B = a · bo + ao · b = 0 (20)

where ~ denotes a reciprocal product between two screws.

Parallel Manipulator Kinematics Using Screws

Velocity Solutions

The end-e↵ector or platform twist (V) of a manipulator is defined as:

V =
⇢

!
v

�
(21)

where ! is the angular velocity and v is the translational velocity.
Assume a parallel manipulator has m branches. For the ith branch, it is assumed that there

are li joints of which ni joints are actuated. For the actuated joint j of the ith branch, a unit
screw, $0ji

, reciprocal to all joints of branch i except for the actuated joint j can be found, i.e.:

$ki ~ $0ji
= 0, for k = 1 to li, j 6= k (22)

Note that for the ith branch of the manipulator:

V ~ $0ji
=

liX

k=1

q̇ki$ki ~ $0ji
= q̇ji$ji ~ $0ji

, for j = 1 to ni (23)

where q̇ denotes a joint rate. The joint rate of the actuated joint j of the ith branch can be found
as:

q̇ji =
V ~ $0ji

$ji ~ $0ji

(24)

Define the reciprocal screw matrix [$0] as:

[$0] =
⇥
· · · $0ji

· · ·
⇤

(25)

where i = 1 to m and j = 1 to ni and define the diagonal matrix D of the inverses of the reciprocal
products of the actuated joints and their associated reciprocal screws as:

D =

2

664

. . . 0
1

$ji~$0ji

0
. . .

3

775 (26)

The inverse velocity solution of a parallel manipulator can thus be expressed in matrix form as:

q̇ = D
�
[�] [$0]

�T V = D[$0]T [�]V (27)



where the matrix [�] is an interchange operator that transforms screws between axis-coordinate
order to ray-coordinate order and is defined as:

[�] =


03x3 I3x3

I3x3 03x3

�
(28)

Solving for V in equation (27) allows the forward velocity solution of a non-redundantly-
actuated parallel manipulator to be expressed in matrix form as:

V =
⇢

!
v

�
=
⇣
D[$0]T [�]

⌘�1
q̇ = [�] [$0]�TD�1q̇ (29)

where the fact that [�]�1 = [�] has been utilized.

Force Solutions

The wrench (F) applied by the end-e↵ector or platform of a manipulator is defined as:

F =
⇢

f
m

�
(30)

where f is the force applied and m is the moment applied. The wrench applied by a parallel ma-
nipulator is the sum of the wrenches applied by each actuated joint of the manipulator. Therefore,
the forward static force solution for a parallel manipulator is given by:

F =
⇢

f
m

�
=

mX

i=1

0

@
niX

j=1

$0ji
wji

1

A

where wji is the wrench intensity applied by the jth joint of the ith branch. In matrix form, the
forward static force solution can be expressed as:

F =
⇢

f
m

�
= [$0]w (31)

where w is a vector of wrench intensities acting on the screws of [$0].
The relationship between the wrench intensity wji and the joint torque/force ⌧ji for joint j of

the ith branch is:
wji =

⌧ji

$ji ~ $0ji

(32)

In matrix form, the relationship between the wrenches and the joint torques/forces for a parallel
manipulator can be expressed as:

w = D⌧ (33)

Substituting equation (33) into equation (31) yields the forward static force solution relating the
joint torques/forces to the force being applied by the manipulator:

F =
⇢

f
m

�
= [$0]D⌧ (34)

The inverse static force solution for a non-redundantly-actuated parallel manipulator is:

⌧ =
�
[$0]D

��1 F = D�1[$0]�1F (35)




