
Kinematic Inversion of Functionally-Redundant

Serial Manipulators: Application to Arc-Welding

Liguo Huo and Luc Baron

Department of Mechanical Engineering
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Abstract: This paper presents a new resolution scheme to solve redundant robotic tasks re-

quiring less than six-degrees-of-freedom. Instead of projecting the secondary task onto the null

space of the Jacobian matrix in order to take advantage of the redundancy, our approach di-

rectly decomposes the task into two orthogonal subspaces where the main and secondary tasks

lie, respectively. This approach has shown to be efficient, i.e., having a low numerical cost, and

accurate, i.e., having a low round-off error amplification. A numerical example is shown for an

arc-welding robotic task.

1 Introduction

Since the late sixties, the control of serial robotic manipulators has received great attentions

from the robotic research community. The earliest work is probably the one from Pieper [1], who

proposed a scheme based on the Newton-Gauss method in order to iteratively converge toward the

desired position and orientation, namely pose, of the end-effector (EE). At each iteration, a small

displacement in joint space is computed from the inverse of a Jacobian matrix times the desired

EE displacement. Whitney [2, 3] proposed to replace the differential form of the Jacobian matrix

of Pieper by a more convenient form based on the translational and angular velocity vectors

associated to the EE, which resulted into the well-known resolved-motion rate method. Since

the inverse of the Jacobian matrix is required, many research works have been conducted on the

conditions for obtaining non-singular Jacobian matrices, including the use of manipulators having

more than six degrees-of-freedom in order to cope with singularities. Liégeois [4] was the first to

propose a method to take advantage of the kinematic redundancy by using the generalized inverse
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together with the projection onto the null space of the Jacobian matrix of an arbitrary vector

chosen as the gradient of an objective function. Nakamura [5] analyzed the kinematic redundancy

of manipulators by the use of matrix theory. Klein and Huang [6] reviewed the algorithms for

computing the generalized-inverse for redundant manipulators. Angeles et al. [7] introduced an

approach-descent algorithm to solve the inverse kinematics of redundant manipulators. Many

research works have considered the computational expense, the roundoff-error amplification and

different ways to take advantage of the kinematic redundancy. More recently, Arenson et al.

[8] proposed a redundancy-resolution scheme that avoid the squaring of roundoff errors while

projecting the secondary task onto the null space of the Jacobian. In all these research works,

the kinematic redundancy is studied without regard for the task to be performed, and hence, the

redundancy comes from the kinematics of the manipulator itself.

In this paper, the sources of kinematic redundancy of a pair of manipulator-task are character-

ized into two groups, i.e., the intrinsic redundancy and the functional redundancy. For the case

of functional redundancy, an approach based on the orthogonal decomposition of the twist is

proposed in order to take advantage of the redundancy without having to project the secondary

task onto the null space of the Jacobian matrix, thus avoiding roundoff-error amplification and

superfluous computations.

2 Background on Kinematic Inversion

Before introducing the redundancy-resolution algorithm, a brief review of the kinematic re-

dundancy of a manipulator with respect to a given task and the kinematic inversion of serial

manipulators in these contexts is provided.

2.1 Intrinsic and Functional Redundancy

Let J denote, the joint space of a robotic manipulator having n + 1 rigid bodies serially

connected by n joints, either revolute R or prismatic P . The position of the manipulator in J

is given by the n-dimensional vector, namely θ, and hence, we have: n = dim(J ) = dim(θ).

Moreover, let O denote, the operational space of the EE of the robotic manipulator resulting

from the joint space J . Since any free-moving rigid body in space can have at most six degrees-

of-freedom (DOFs), the dimension of O is also at most six, and hence, we have: o = dim(O) ≤ 6.

Furthermore, let T denote, the task space such as required by the functional mobility of the EE,

independent of the manipulator architecture and hence, we have: t = dim(T ) ≤ 6. Now, let us
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introduce the following three definitions:

Definition 2.1: Intrinsic redundancy

A serial manipulator is said to be intrinsically redundant when the dimension of the joint space

J , denoted by n = dim(J ), is greater than the dimension of the resulting operational space O of

the EE, denoted by o = dim(O) ≤ 6, i.e., when n > o. The degree of intrinsic redundancy of a

serial manipulator, namely rI, is computed as

rI = n− o. (1)

Definition 2.2: Functional redundancy1

A pair of serial manipulator-task is said to be functionally redundant when the dimension of

the operational space O of the EE, denoted by o = dim(O) ≤ 6, is greater than the dimension

of the task space T of the EE, denoted by t = dim(T ) ≤ 6, while the task space being totally

included into the operation space of the manipulator, i.e., T ⊆ O, and hence, o > t. The degree

of functional redundancy of a pair of serial manipulator-task, namely rF , is computed as

rF = o− t. (2)

Definition 2.3: Kinematic redundancy

A pair of serial manipulator-task is said to be kinematically redundant when the dimension of

the joint space J , denoted by n = dim(J ), is greater than the dimension of the task space T of

the EE, denoted by t = dim(T ) ≤ 6, while the task space being totally included into the resulting

operation space of the manipulator, i.e., T ⊆ O, and hence, n > t. The degree of kinematic

redundancy of a pair of serial manipulator-task, namely rK, is computed as

rK = n− t. (3)

Upon substitution of eqs.(1) and (2) into (3), it becomes apparent that the kinematic redundancy

come from both the intrinsic and functional redundancies, i.e.,

rK = rI + rF . (4)

In the literature, most of the research works focusing on redundancy-resolution of serial manip-

ulators suppose that rF = 0, and thus, study rK = rI . In this paper, we will study the opposite

case, i.e., we suppose that rI = 0, and thus, study rK = rF .

1This definition of functional redundancy of serial manipulator-task is directly expandable to other types of
manipulators such as parallel and hybrid manipulators.
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2.2 Non-Redundant Manipulators

For quick reference, we briefly summary of the resolved motion-rate method [2, 3] that is

commonly used to iteratively solve the inverse kinematics of serial manipulators. The method

is based on the relationship between the EE velocity, called twist and denoted t, and the joint

velocities, denoted θ̇, given by

t = Jθ̇, (5)

with t and θ̇ defined as

t ≡ [ωT ṗT ]T ∈ 2× IR3, θ̇ ≡ [θ̇1 · · · θ̇n]T ∈ IRn, J ≡

[

A

B

]

, A,B ∈ IR3×n, (6)

where ω ∈ IR3 is the angular velocity vector of the EE, ṗ ∈ IR3 is the translation velocity vector

of a point of the EE, while θ̇i is the velocity of joint i of the manipulator. It is noteworthy that

t is not defined as a vector of IR6, but rather as a set of two vectors of IR3 casted into a column

array, and hence, t ∈ 2× IR3 ≠ IR6. This distinction will be further used in section 3.0.

Upon substituting the finite displacement ∆t of a small time interval (see for example [9])

into eq.(5), the finite displacement ∆θ in J can be computed as

∆θ = J−1∆t, (7)

where it is apparent that J must be square and non-singular.

2.3 Intrinsically-Redundant Manipulators

For intrinsically-redundant serial manipulators, J always has more columns than rows, and

hence, equation (5) becomes an under-determined linear algebraic system having infinitely many

solutions. In this case, Liégeois [4] proposed to compute the finite displacement ∆θ as

∆θ = (J†)∆t
︸ ︷︷ ︸

minimum−norm solution

+ (1− J†J)h
︸ ︷︷ ︸

homogeneous solution

, (8)

where J† is defined as the right-generalized inverse of J such that

J† ≡ JT (JJT )−1, (9)

and h is an arbitrary vector of J allowing to satisfy a secondary task. The first term in the

right-hand side (RHS) of eq.(8) is known as the minimum-norm solution of eq.(5), i.e., the ∆θM

that minimizes ∥∆θ∥ among all the ∆θ that are solutions of eq.(5). The second part of the RHS

of eq.(8) is known as the homogeneous solution of eq.(5), i.e., the ∆θH that produce ∆t = 0,
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i.e., no displacement of the EE. This joint displacement ∆θH is also known as the self-motion

of the manipulator. It is symbolically computed as the projection of an arbitrary vector h onto

the nullspace of J with the orthogonal projector (1 − J†J). Equation (8) is used to solve the

kinematic inversion of intrinsically-redundant manipulators by many researchers (e.g., Siciliano

[10], Arenson et al.[8]), including some who had put a special attention in avoiding the squaring

of the condition number while solving eq.(8).

2.4 Functionally-Redundancy Manipulators

Typically, the motion of the EE required by a task is usually the full 6-DOF. However, many

industrial tasks such as arc-welding, milling, deburing, laser-cutting, and many others, require

less than 6-DOF, because of the presence of a symmetry axis or plane on the EE. For example,

the general task of arc-welding requires 3-DOF for the displacement of the end-point of the

electrode, but requires only 2-DOF for its orientation. The rotation of the welding-gun around

the electrode axis is clearly irrelevant to the view of the task to be accomplished. In order to

cope with this problem, Baron [11] proposed to add a virtual joint around the symmetry axis

of the electrode, in order to transform the functional redundancy into an intrinsic redundancy

thereby solving an augmented Jacobian matrix with eq.(8). However, this augmented approach to

solve functionally-redundant robotic tasks suffers from the potential ill-conditioning of J and the

additional computational cost required to solve an augmented J. Below, we propose a projected

approach to solve the same problem.

3 Kinematic Inversion of Functionally-Redundant Manipulators

After introducing the orthogonal decomposition of vectors and twists, we formulate the inverse

kinematics of functionally-redundant manipulators by projecting the velocity relationship onto

the instantaneous-task subspace, thereby producing the so-called projected approach.

3.1 Orthogonal-Decomposition of Vectors

Decomposing any vector ( · ) of IR3 into two orthogonal parts, [ · ]M , the component lying on

the subspace, M, and [ · ]M⊥, the component lying in the orthogonal subspace, M⊥, using the

projector M and an orthogonal complement of M, namely M⊥, as follows:

( · ) = [ · ]M + [ · ]M⊥ = M( · ) + M⊥( · ) = (M + M⊥)( · ) (10)

It is apparent from eq.(10), that M and M⊥ are related by M+M⊥ = 1 and MM⊥ = O, where

1 and O are the 3 × 3 identity and zero matrices, respectively. The orthogonal complement of
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M thus defined, M⊥, is therefore unique, and hence, both M and M⊥ are projectors that verify

the following properties:

• Symmetry: [M]T = M, [M⊥]T = M⊥

• Idempotency: [M]2 = M, [M⊥]2 = M⊥

• Rank-complementarity: rank(M) + rank(M⊥) = 3
• Subspace-complementarity: M⊕M⊥ = IR3

The projector M projects vectors of IR3 onto the subspace M, while the orthogonal projector

M⊥ projects those vectors onto the orthogonal subspace M⊥. These projectors are given for the

four possible dimensions i of subspaces of IR3 as:

Mi =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1

P

L

O

, M⊥
i =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

O

L

P

1

,

i = 3 ⇒ 3-D task
i = 2 ⇒ 2-D task
i = 1 ⇒ 1-D task
i = 0 ⇒ 0-D task

, (11)

where the plane and line projectors, P and L, respectively, are defined as:

P ≡ 1− L, L ≡ eeT , (12)

in which e is a unit vector along the line L and normal to the plane P. The null-projector O

is the 3 × 3 zero matrix that projects any vector of IR3 onto the null-subspace O, while the

identity-projector 1 is the 3× 3 identity matrix that projects any vector of IR3 onto itself.

3.2 Orthogonal-Decomposition of Twists

Any twist array ( · ) of 2 × IR3 can also be decomposed into two orthogonal parts, [ · ]T , the

component lying on the task subspace, T , and [ · ]T ⊥, the component lying in the orthogonal task

subspace (also designated as the redundant subspace), T ⊥, using the twist projector T and an

orthogonal complement of T, namely T⊥, as follows:

( · ) = [ · ]T + [ · ]T ⊥ = T( · ) + T⊥( · ) = (T + T⊥)( · ) (13)

It is apparent from eq.(13), that T and T⊥ are projectors of twists that must verify all the prop-

erties of projectors of section 3.1. However, twists are not vectors of IR6, and hence, projectors

of twists cannot be defined as in eqs.(11) and (12), e.g.,

T ≠ ttT , T⊥ ≠ 1− ttT , (14)

but must rather be defined as block diagonal matrices of projectors of IR3, i.e.,

T ≡

[

Mω O

O Mv

]

, T⊥ ≡ 1−T =

[

1−Mω O

O 1−Mv

]

, (15)
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where Mω and Mv are projectors of IR3 defined in eqs.(11) and (12) which allow the projection

of the angular and translational velocity vectors, respectively. It is noteworthy that the matrices

of eq.(14) do not verify the properties of projectors, and hence, cannot be used for orthogonal

decomposition. Finally, eq.(13) becomes

t = tT + t⊥T = Tt + (1−T)t. (16)

3.3 Twist Decomposition Algorithm in Solving Functional Redundancy

For functionally-redundant serial manipulators, it is possible to decompose the twist of the EE

into two orthogonal parts, one lying into task subspace and another one lying into the redundant

subspace. Substituting eq.(16) into eq.(7) yields, we have

∆θ = (J†T)∆t
︸ ︷︷ ︸

task displacement

+ J†(1−T)Jh
︸ ︷︷ ︸

redundant displacement

, (17)

where h is an arbitrary vector of J allowing to satisfy a secondary task. Vector h is often

chosen as the gradient of an objective function to minimize (Baron [11]). For the avoidance of

joint-limits, the objective function z can be written as to maintain the manipulator as close as

possible to the mid-joint position θ̄, i.e.,

z =
1

2
(θ − θ̄)TWTW(θ − θ̄)→

min
θ

, (18)

with θ̄ and W being defined as

θ̄ ≡
1

2
(θmax + θmin), W ≡ diag(θmax − θmin). (19)

Vector h is thus chosen as minus the gradient of z, i.e.,

h = −∇z. (20)

The first part of the RHS of eq.(17) is the joint displacement required by the task, while the

second part is the joint displacement in the redundant subspace (or irrelevant to the task).

Clearly, equation(17) does not require the projection onto the null-space of J as most of the

redundancy-resolution algorithms do, but rather requires an orthogonal projection based on the

instantaneous geometry of the task to be accomplished.
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Algorithm 3.1: Twist Decomposition Algorithm

1 {p,Q}⇐ DKP(θ)
∆Q⇐ QTQd

∆p⇐ pd − p

∆t←

[

Qvect(∆Q)
∆p

]

DKP(θ)⇒

⎧

⎪
⎨

⎪
⎩

e⇒Mω

f ⇒Mv

J

,

T⇐

[

Mω O

O Mv

]

,

2 ∆θ ⇐ J†T∆t + J†(1−T)Jh

if ∥∆θ∥ < ϵ then stop;
else
θ ⇐ θ + ∆θ

goto 1

The twist decomposition algorithm 3.1 is based on resolved motion rate method. Instead of

using eq.(8) as many other RR schemes, equation (17) is used to compute ∆θ. In step 1, Qd

and pd are the desired orientation matrix and position vector of the EE, respectively; vect( · )

is the function transforming a 3× 3 rotation matrix into an axial vector as defined in [9] (page

34); ϵ is the convergence criterion; the DKP(θ) is used to compute firstly the position vector p

and orientation matrix Q, then the unit vectors of irrelevant rotation and translation axes, i.e.,

e and f , in order to build the twist projector T.

4 Application to Arc-Welding

When performing arc-welding operations, the electrode of the welding tool has an axis of

symmetry around which the welding tool may be rotated without interfering with the task to

be performed. This axis describes the geometry of the functional redundancy (or the redundant

subspace of twists). The unit vector e denote the orientation of the axis of symmetry along the

electrode. The projection of ω along e is the irrelevant component of ω, while its projection onto

the plane normal to e is the relevant component of ω. For a general arc-welding task around the

electrode axis e, the twist projector is defined as

Tweld ≡

[

(1− eeT ) 0

0 1

]

, T⊥
weld ≡

[

eeT 0

0 0

]

, (21)

Now, substituting eq.(21) into eq.(17) yields

∆θ = J†Tweld∆t + J†

[

eeTAh

0

]

, (22)
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where A is the upper part of J as defined in eq.(6). Equation (22) can be used as line 2 of

algorithm 3.1 in order to solve the inverse kinematics of serial manipulators while performing a

general arc-welding task.

Figure 1: Arc-welding task with the PUMA 560 manipulator

As shown in Fig. 1, a PUMA 560 serial manipulator is used to perform a pipe-to-bride welding

task. Its Denavit-Hartenberg parameters are described in Table 1. The welding tool has a

transformation matrix Atool as

Atool =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0 cos(π

6
) − sin(π

6
) 0.1

0 sin(π
6
) cos(π

6
) 0.501

0 0 0 1

⎤

⎥
⎥
⎥
⎦

. (23)

The task is to perform the following trajectory Λ in T = 285 sec., i.e.,

p =

⎡

⎢
⎣

0.1 cos(ωt)
0.6 + 0.1 sin(ωt)

−0.59

⎤

⎥
⎦ , Q =

⎡

⎢
⎣

cos α − sin α cos β sin α sin β
sin α cos α cos β cos α cos β

0 sin β cos β

⎤

⎥
⎦ , (24)

with α = π
2

+ ωt, β = −3π
4

, ω = 2π
T

, 0 ≤ t ≤ T , where distances and angles are expressed in

meter and radians, respectively. The electrode axis e can be computed as

e = Q1Q2 · · ·Q6k, k ≡ [0 0 1]T . (25)

The secondary task h is to avoid the joint-limits such that:

h = −W(θ − θ0), (26)

where W is a positive-definite weighting matrix as in eq.(19) and θ0 the mean-joint position

defined as

θ0 ≡
[

π/2 −π/3 π π/4 π/3 π
]T

. (27)
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Figure 2: Joint position with respect to time without using RR scheme
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As shown in Fig. 2, without taking advantage of the axis of symmetry of the electrode, the

manipulator is able to perform the task while using the full amplitude of its joint motion. A

second consecutive turn is, obviously, not possible without exceeding the joint limits. The left side

of Fig. 3 shows the time history of the joint positions of the manipulator for two consecutive turns

along the given welding trajectory with the augmented approach. Apparently, the manipulator is

able to perform multiple consecutive turns without exceeding the joint limits. However, excessive

joint velocities appear at every turn. The right side of Fig. 3 shows the time history of the

joint positions for two consecutive turns along the curve welding trajectory with the projected

approach. Apparently, the manipulator is still able to perform multiple consecutive turns without

exceeding the joint limits. Excessive joint velocities appear only at the first turn because of the

bad initial conditions, and not at all for the consecutive turns.

Table 2 shows the errors of the augmented approach and projected approach. The mean value

of position error array is denoted as ep; the mean value of orientation error array in task space is

denoted as oe. It is apparent from Table 2 that the projected approach has much lower position

and the orientation errors in the task space than the augmented approach. In other words, the

projected approach produces more accurate solutions than the augmented approach.

5 Conclusions

In this paper, the concept of functional redundancy is defined and discussed. The kinematic

inversion of functionally-redundant serial manipulators is formulated using the orthogonal de-
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Figure 3: Joint position with respect to time for the augmented approach (left) and projected
approach (right)
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composition of the twist of the EE into a task subspace and a redundant subspace. The numerical

simulation of the arc-welding of a pipe-to-bride with the PUMA 560 serial manipulator has shown

to be effective relative to the augmented and also to the non-redundant approaches.
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joint θi ai bi αi

1 θ1 0.0 0.0 −π/2
2 θ2 0.4318 0.0 0.0
3 θ3 −0.0203 0.1491 π/2
4 θ4 0.0 0.4330 −π/2
5 θ5 0.0 0.0 π/2
6 θ6 0 0.055 0

unit rad. m m rad.

Table 1: DH parameters of PUMA 560

method ep oe

augmented 0.0789 2.7403× 10−5

projected 1.0533× 10−7 1.0123× 10−5

unit meter rad.

Table 2: Errors of the augmented approach
and projected approach
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