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Abstract: In order to model more precisely compliant mechanisms, each planar compliant joint is replaced
by 3 virtual springs. An equation giving the static equilibrium of any compliant parallel mechanism (CPM)
is then found and combined with the kinematic equations to formulate the Geometrico-Static Model (GSM)
of planar CPM. Next, by differentiating this GSM, a Kinemato-Static Model is formulated, in which appears
notably the compliant matrix of a CPM. At the end of the paper some findings about CPMs arising from the
use of these models are given.
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Modélisation exacte des mécanismes parallèlles compliants dans le plan

Résumé: Afin de modéliser plus exactement les mécanismes compliants, chaque articulation compliante
est remplacée par 3 ressorts virtuels. Une équation décrivant l’équilibre statique de tout mécanisme par-
allèlle compliant (MPC) est donnée et combinée aux équations cinématiques afin de formuler un modèle
géométrico-statique (MGS) des MPC plan. Ensuite, en différenciant ce MGS, un modèle cinémato-statique
est formulé. Dans celui-ci apparaı̂t notamment la matrice de compliance d’un MPC. À la fin du papier, sont
donnés quelques enseignements sur ces MPCs tirés de l’utilisation de ces modèles.
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1 INTRODUCTION

The use of compliant joints as passive joints in parallel mechanisms (PM) eliminates clearance and wear,
thereby improving the precision and the repeatibility of the manipulator.
However, the behaviour of a compliant joint differs from that of a conventional joint and must be taken into
account. The passive joint’s stiffness is not zero in its main axis and is not infinite (perfectly stiff) in the
other directions [1]. In this work, a compliant joint is not considered only as one joint but as a group of 3
virtual joints with 3 springs.
The additional virtual joints lead to considering a compliant parallel mechanism as a highly redondant
mechanism. Thus some constraints must be satisfied, namely : geometric, kinematic (both corresponding to
the closure of kinematic chains) and static constraints (corresponding to the static equilibrium between all
the virtual springs).
Here, a Geometrico-Static Model (GSM) and a Kinemato-Static Model (KSM) are presented that enable the
accurate computation of the position of a manipulator when the actuators’ position and the external forces
are known. Simulations with these models reveal some interesting characteristics that can be exploited to
improve the design of a compliant parallel manipulator.

2 MODEL OF A CPM
2.1 Modelling of a joint

In order to calculate the motion due to the flexibilies of a compliant joint in the 3 directions, we should
consider it not as a 1-DoF joint, but as a group of 3 virtual joints combined with 3 springs (Fig.1).
The stiffness in the main axis is called the primary stiffness and the stiffnesses in the other directions are
called secondary stiffnesses. A ratio ρ between the secondary stiffnesses and the primary one indicates if
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Figure 1: Conventional and realistic compliant revolute joint models

the behaviour of a compliant joint is close to that of a conventional joint (in which ρ → +∞).
In this work, it is assumed that the stiffnesses in a joint are not coupled. It is the case in cross section
compliant joints [2]. Thus the matrix Kjoint corresponding to only one isolated joint is a diagonal matrix
composed by kx, ky and kφ.

2.2 Constraints to be satisfied

2.2.1 Geometric constraints
The following equations are the constraints corresponding to the closure of loops formed by the legs of a
PM:

xi = xj , ∀(i, j) (1)

where xi = [xi, yi, φi]
T is the pose vector of the end body of the ith leg (respectively j).
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2.2.2 Vector of free parameters
A vector of free parameters χ can be defined such that θ, the complete articular vector of the mechanism,
always satisfies the geometrical constraints :

θ = θ(χ) (2)

The dimension l of this vector equals the number of degrees of freedom (DOF) of the kinematic equivalent
mechanism.
We define R = dθ

dχ , such that dθ = Rdχ.

2.2.3 Kinematic constraints
The global Jacobian matrix of the mechanism with n legs is defined as

Jθ =
1
n

[Jθa , · · · ,Jθn ] =
1
n

[
∂xa

∂θa
, · · · ,

∂xn

∂θn

]
(3)

with Jθi
the Jacobian matrix and θi the articular vector of the ith leg. The relation between the effector’s

motion and the joints motion, substituting the geometric constraints, is

dx = Jθdθ = JθRdχ (4)

2.2.4 Static Equilibrium
The principle of virtual work gives the relation between the work done by the external force at the effector
and the work done by the springs in each joint

(−t)T dθ = fT dx (5)

where f is the vector of external efforts applied on the effector and t is the vector of forces and torques in
the springs defined by

t = −Kθ(θ − θ0) (6)

with Kθ the joints stiffness matrix and θ0 the vector of virtual springs’ free lengths.
Then substituting all constraints in (5) and reducing by (dχ) —the vector of independent coordinates—, we
obtain the static equilibrium of the CPM

RT
[
t + JT

θ f
]

= RT s = 0 (7)

We note s the vector representing at each joint the sum of the efforts due to springs and due to external
efforts. The dimension of this vector s is m and the dimension of (RT s) is l, so we can notice that some
local sums (some coordinates sk of s) can differ from 0, even when the mechanism is in equilibrium, without
any external effort.

2.3 Geometrico-Static Model

The solution of the GSM are the values of {θ, f ,α,x} that satisfy the geometric and the static constraints.
In case of multiple possible solutions, some additional criteria like stability [3] should be used.
Moreover, since the components of θ are internal parameters, it is theoretically possible to reduce the model
of a planar CPM to a smaller system of 3 equations with 9 variables, namely

x = G(α, f) (8)
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2.4 Kinemato-Static Model

This model aims at describing the relation between the motion of the effector, the motion of actuators and
the variation of external efforts3.
The GSM is first differentiated in order to obtain a relation under the following form

dx = Jθ0dθ0 + CCdf (9)

The result is : 
Jθ0 = JθR K−1

χ RTKθ

CC = JθR K−1
χ RTJT

θ

(10)

with Kχ the stiffness matrix in the free parameter domain defined as

Kχ =
[
RT (Kθ −KG)−KR

]
R (11)

where KG (See [4]) and KR are defined as
KG =

[
(∂Jθ

∂θ1
)T f , · · · , ( ∂Jθ

∂θm
)T f

]
KR =

[
( ∂R

∂θ1
)T s, · · · , ( ∂R

∂θm
)T s

] (12)

Matrix CC is the global compliance matrix of the mechanism. Matrix Jθ0 is called the compliant Jacobian
matrix.

3 CONTRIBUTIONS OF THE MODEL

By using the above models, we can accurately determine the motion of a CPM. The results —exactly equal
to those given by MSC Adams when we use bushings to model compliant joints— show the differences in
kinematic and static behaviour of a CPM and a conventional mechanism.

Kinematics

• The ratio ρ between the primary stiffness and the secondary stiffnesses of the joints has an impact on
the kinematics of the mechanism. The larger ρ is, the closer the behaviour of the CPM will be to that
of a conventional mechanism.

• When the compliant mechanism is close to the zero energy starting point, internal efforts and bendings
are small, and hence its behaviour is closer to that of conventional mechanisms.

• The mechanisms built by replacing conventional joints by compliant joints do not have the same
number of DoFs.

Statics

• This new KSM enables the computation of the effects of the mechanism’s compliance.

• A mechanism in which the joint stiffnesses are high is less sensitive to the external efforts, but it
requires more powerful actuators.

3The dynamic effects are not considered in this model.
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CONCLUSION

The presented models better represent the nature of CPMs and hence enhance the accuracy of manipulators.
Morevoer, the equations are simple and easy to solve. In the future, this model will be extended to spatial
mechanisms and to compliant joints with coupled stiffness. The accuracy of the model will also be evaluated
with a prototype.
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