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There are many applications dealing with contact/impact problems in industry and engineering and make their
modeling an essential and very demanding topic in multibody dynamics. Impact events in multibody systems
may arise from different sources. The most common type happens when moving bodies in the system collide.
Clearances at different joints, mass capture and mass release, intermittent motion of bodies and others may
be other sources of impact. Due to the nature of impact, high forces will be exerted to the impacting bodies
during a very short period of time. Therefore, in order to describe the physical process correctly, considering
local deformations becomes often an inevitable demand. In such situations, however, rigid body impact modeling
can not be used anymore and instead, the impact problem of deformable bodies must be solved.

The formulation of impact kinematics in normal direction for planar deformable bodies can be started by
obtaining a relation between normal gaps gN of possible contact pairs and generalized coordinates q of bodies.
Furthermore, a relation for the generalized coordinates in terms of the normal impact forces λN is to be obtained.
Substitution of such a relation in the relation between gN and q states the normal gaps vector gN in terms of
λN . For this purpose, we consider the equations of motion as

M · q̈ = h + WN · λN , (1)

where M is the system mass matrix, q̈ is the vector of generalized accelerations, h contains the generalized
external, internal and Coriolis forces. The Lagrange multipliers vector λN denotes normal impact forces which
are projected to the generalized directions through the matrix WN . Integrating q̈ using the 4th order Runge-
Kutta integration approach yields a relation between the systems generalized coordinates q and the impact forces
λN . By successive evaluations and substitutions of the vector q for several stages of the 4th order Runge-Kutta
scheme one obtains, see [1],
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where the index i is the ith integration step, ∆t is the step size and M−1
k ,WNk and hk (k = 1, 2, 3) arise

from equations of motion but are evaluated at the first three stages of the 4th order Runge-Kutta method. The
generalized coordinates can now be substituted from Eq. (2) into the relation of normal gaps to reach

gN = WT
gq · λN + wgq with gN ≥ 0 , λN ≥ 0 , gN · λN = 0 , (3)

where the complementarity relation between gN and λN is utilized. This relation of normal impact will further
be used to construct the linear complementarity problem (LCP), see [2], which is to be solved for calculation
of impact forces λN , see [1, 3]. As another possibility to formulate normal impact of planar deformable bodies,
one may consider the complementarity relations on velocity level and attempt to find a relation between the
velocity of normal gaps ġN and λN . In this case, we use the relation between ġN and the generalized velocities
q̇, see [3]. Again one can use the 4th order Runge-Kutta integration approach but this time one finds a relation
between the systems generalized velocities q̇ and λN
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The generalized velocities can now be substituted from Eq. (4) into the relation of velocity of normal gaps to
obtain

ġN = WT
gv · λN + wgv with ġN ≥ 0 λN ≥ 0 ġN · λN = 0 . (5)

Similar to the formulation on position level, the formulation on velocity level may be followed to reach the
required LCP. At this point, we make some remarks which have to be considered when implementing this
approach:

• During the formulation of normal impact on position and velocity level, no coefficient of restitution is
introduced for obtaining the impact law and the energy loss is taken into account directly by the damping
in the material law of the deformable bodies. This is considered in the vector h of Eq. (1).

• Formulations presented on position and velocity level based on the explicit 4th Runge-Kutta method are
just used as a discretization method to obtain an analytical formulation between gN and λN or between
ġN and λN and not for the main integration processes to proceed to the next time step.

• It is noticeable that the complementarity conditions used for impact analysis are also valid for continual
contact of planar deformable bodies. In this way they will eliminate the necessity of switching between
continual contact and impact formulations.

• The required LCP for normal impact on velocity level must be considered only for the corresponding active
contact pairs, no matter whether friction is considered or not. The same holds for the case when normal
impact on position level is used together with friction. However, normal impact on position level without
friction may be considered for active and non-active contact pairs since the collision detection step may
be done automatically as the result of the LCP on position level.

Some results of the frictionless impact simulation between two identical elastic disks are depicted in Fig. 1.
In this example, the left disk has an approaching initial velocity of 0.5 m/s while the right disk is initially at
rest. The quantities E = 2e8 Pa, ρ = 10 kg/m2 and ν = 0.3 for Young’s modulus, density and Poisson’s ratio
are used, respectively. The results show that the formulations on both position and velocity level approach the
precise results of FEM even for stiff planar deformable bodies provided that a proper number of eigenmodes of
the FEM model for building the reduced model of deformable bodies together with an appropriate time step is
chosen. Therefore, considering the material damping for treatment of energy loss in impact of planar deformable
bodies is sufficient without having to introduce any coefficient of restitution.
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a: position level
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b: velocity level

Figure 1: Impact simulation of two identical elastic disks
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