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Abstract. The kinematic modelling and analysis of a 4 degrees of freedom wire-actuated parallel manipulator with
redundant actuation is investigated. The manipulator employs combinations of rigid links, joints and wires. Hybrid
actuation of joints and wires, two actuated joints and three actuated wires, is used. Position and first and second
order kinematics of the closed-loop manipulator are formulated based on matrix exponentials. The transfer of first
and second order kinematic variables, i.e., wire/joint velocities and accelerations, among the manipulator task space
coordinates, active and passive joint coordinates and wire lengths are provided.
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1. INTRODUCTION

Parallel manipulators are closed-loop mechanisms whose mobile platforms (end effectors) are connected to the
base by means of at least two kinematic chains (legs/branches). Parallel manipulators have been investigated and
utilized in many applications for half a century [1-3]. Wire-actuated parallel manipulators have been used for the
advantages of being lightweight, low cost and having good load carrying capacity. For a mass suspended by wires in
space, generally more than six wires are needed to equilibrate the mass against an external force/moment. Hence, the
class of wire-actuated manipulators usually requires some means of redundant actuation to manipulate the mobile
platform because of the inability of wires to exert forces in both directions along their lines of actions.

Kinematic analysis is required for mechanism design, in force and stiffness analysis, as well as in controller
design and simulation of manipulators. The manipulator kinematics is used to relate the motion (displacement,
velocity, acceleration) of joints to the end effector motion. Moving reference frames attached to individual links,
e.g., Denavit-Hartenberg parameters [4], are used widely, and the relative motion of a frame with respect to another
frame is formulated in the form of homogenous transformation matrices in a Cartesian coordinate system. Screw
theory is commonly used for the first order kinematics and static analysis of manipulators to establish the kinestatic
relations [5, 6]. The main advantage of the screw theory is the physical interpretation of the motion (twist) of the
manipulator and the forces and moments (wrench) applied/resisted by the manipulator. Matrix exponentials, which
are obtained from Lie groups and algebra associated with the motion in a coordinate system, are also being used in
kinematic analysis of robot manipulators, e.g., in [7]. Matrix exponentials provide compact representation of the
rigid body motion, e.g., [8-10], so that the physical interpretation of the motion of manipulators can be performed.

The kinematic analysis of parallel manipulators is widely studied in literature due to the complexity that arises
because of employing passive joints, which usually are not measured, in addition to active joints. In general, the
solution of inverse finite kinematics (displacement analysis) of parallel manipulators is more straightforward
compared to forward kinematics. Kinematic analysis of closed-loop manipulators could be based on loop closure
equations from which a relation between the joint variables of the manipulators is obtained. Additionally, the
position and orientation (pose) of the mobile platform of a parallel manipulator in terms of individual branches can
be used to obtain a relation between the joint variables and mobile platform coordinates.

The application of rigid body kinematics to a wire-actuated parallel robot manipulator is studied in this article.
The manipulator employs a rigid branch to constrain the motion of mobile platform in yaw and roll rotations. The
degrees of freedom (DOF) and constraints of the closed-loop manipulator are discussed. Lie groups and algebras,
matrix exponentials applied to rotation groups, and mappings of the first and the second order kinematic variables
among the task space coordinates, active and passive joint coordinates and wire lengths are investigated. The
kinematic analysis reported in this article has been used in force and stiffness analyses of the manipulator [11, 12].

2. RIGID BODY MOTION APPLIED TO A WIRE-ACTUATED PARALLEL MANIPULATOR

Applications of theory of kinematics are illustrated in this section for a 4 DOF wire-actuated parallel manipulator
(Figure 1). The manipulator was designed in [13] for soil sampling applications at planetary explorations based on
the specifications provided by MD Robotics, Ltd., developer of Space Station Remote Manipulator System (also



known as Canadarm2). This mechanism consists of a rigid branch, which has a 4 DOF, and is controlled by two
actuated joints and three wires. The forward and inverse position (displacement), velocity and acceleration analyses
are performed for the rigid branch and the wires. The transfer of coordinates is formulated to write the passive joint
rates, active joint/wire rates and mobile platform coordinates in terms of each other.

The wire-actuated manipulator includes a rigid branch and three wires. The rigid branch connects the centre of
the mobile platform to the base, and consists of a parallelogram mechanism, which is connected to the base, and a
link for connecting the mobile platform to the parallelogram mechanism. The rigid branch consists of seven joints,
where the two joints closest to the base, at the origins of coordinate frames O, and O, are actuated. Additionally,
three wires attached to points 4; on the base, and points B; on the moving links, are used to control the mobile
platform. The wires are driven by the motor and drum assembly at points 4; as can be seen from Figure 1.

Figure 1 Considered 4 degrees of freedom wire-actuated parallel manipulator.

The parallelogram mechanism of the rigid branch, shown in Figure 2(a), has two degrees of freedom. This
linkage is kinematically similar to the spatial four-bar mechanisms with layout of two spherical joints at the base and
two revolute joints on the coupler, with an idle degree of freedom, which occurs due to the coincident rotation axis
of the spherical joints. This parallelogram mechanism is over-constrained due to the usage of only revolute joints as
for n = 5 links, j = 5 joints and f; = 1 for revolute joint i, the number of equations E = 6(n—1) =24 is less than the

j=5
number of constraints y = Z (6-f,)=25.
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Figure 2 (a) Parallelogram mechanism, (b) Serial mechanism of the wire-actuated parallel manipulator.



The serial mechanism (Figure 2(b)) consists of two serially connected links, one of which is connected to the
coupler of the parallelogram mechanism and the other link is the mobile platform. Three wires are attached to this
linkage to actuate the mechanism. Thus, an additional wire is used to maintain the internal forces. As opposed to
conventional force-closure mechanisms in which a rigid object is grasped by contact forces, the serial mechanism
consists of two rigid links interconnected by a revolute joint. For this mechanism, the interaction forces of the two
links help maintaining the force-closure conditions required to manipulate the links by means of the wires.

The kinematic analysis of the mechanism is investigated by considering the motion of the wires and the rigid
branch separately. Kinematics of the rigid branch is formulated based on the Denavit-Hartenberg coordinate frames.
The wires in tension are treated such that at their attachment points to the base they have two rotational degrees of
freedom and can make a translational motion along the wire axes determined by the line joining the corresponding
attachment points; the wires can make a spherical motion centered at the attachment point to the rigid branch. That
is, the wires in tension are modelled such that they are equivalent to a universal-prismatic-spherical linkage.

2.1. Mobility Analysis

The degrees of freedom of the rigid branch can be calculated using the generalized mobility equation (Griibler’s
equation). However, due to the special geometry of some mechanisms, including the rigid branch, this equation does
not provide correct mobility [14-16]. The degrees of freedom of the rigid branch as calculated using Griibler’s
equation, F = 6(n —1)—- é(s_fi), gives F' = 1 for n = 7 links, j = 7 joints and all the joints having one degree of

i=1

freedom (f; = 1). The formula F =F, + F, = F, + M + F, - F, of [14] can be used to calculate the correct degrees of

freedom of the mechanism. Considering this equation, £, =1is calculated from Griibler’s equation. Also, the total

idle degrees of freedom F, is zero since the revolute joint axes are not collinear. There is one closed-loop due to the
parallelogram mechanism, so the total over closing constraints which are used to give additional support to the
mechanism without changing its degrees of freedom is 1 (¥.= 1). The general constraints M are 2 since the mobile
platform of the rigid branch cannot rotate about two of the axes of the fixed coordinate system. The total passive
degrees of freedom are zero (F), = 0) as there are no vanishing joint variables during the velocity analysis. Thus, the
degrees of freedom of the mechanism can be calculated as /' = 4. The apparent mobility is F, = F - F. =4 . This

result is the same as what the group theory (e.g., [17]) would predict for this branch. That is, a layout consisting of a
parallelogram mechanism with revolute joints on the base and on the coupler links, both joints lying on the plane of
the parallelogram, followed by another revolute joint being parallel to these two revolute joints (which is a
Schonflies-motion generator) would have 4 DOF.

2.2. Position Analysis

As has been discussed in [9], the rigid body transformation can be defined as a mapping ¢ : R°> — R* such that

the distance between any two points on the body and the orientation of points relative to each other are preserved.
Rigid body motions are isometries that preserve the distance in space, and can be described by means of group

theory. The orthogonal group, denoted by O(n), is the group of nxn matrices such that RTR=RR" =1 . The
group of rotations in Euclidean space is called the special orthogonal group S0(3). Every rotation can be fully
described by an axis and a rotation angle (n,6), i.e., by three parameters. SO(3) is a compact group since the

parameters that it describes are closed and bounded, however, it is not an abelian group since it is not possible to
obtain the same orientation by commuting the sequence of rotations. This group can be described by:

SO(3)={ReR*> |RR" =R" R=1|R|=1} (1)
The SO(3) group is an isometry, therefore IR(a—b)|=|la—b|, a,beR’® and R(axb)=RaxRb,abec®R’.

Establishing the groups for rotation and translation, the rigid body motion can be investigated in the Euclidean
space. If the position and orientation of a rigid body attached frame with respect to a fixed coordinate system are
respectively denoted as # and R, using the special Euclidean group, the configuration space of body is expressed as:

SE(3)={r,R)|re®*, R e SO(3)| @)
Thus, (r,R)e SE(3) completely specifies the configuration of the rigid body. Then the position of a point on the
rigid body is defined in the fixed frame using the affine mapping as °p=r+Rd . Using the homogenous point
coordinates, the homogenous representation of this mapping is:



d,

Op _ R r d2 _ d

T .
1

The Lie algebra associated with the special orthogonal group and special Euclidean group are defined
respectively as so(3) and se(3):

soB)={wer? W’ = -ﬁ} 4)
se(3)= {;v ;} |weso(3)ve 91’3} (5)

where w is the skew symmetric tensor for the angular velocity of the rigid body. The matrix exponentials obtained
from kinematic analysis is generally one of the bases in so(3) or se(3). The basis given for so(3) induces the

rotation matrices in S0(3) as:
RX(9)=€?9’ Ry(@)ze;g ’ Rz(9)=e'?9 (6)

Some of the important properties of the exponential mapping and skew symmetric matrices in S0(3) and s0(3)
are given in [7, 9]. The Lie algebra se(3) induces a rigid body motion in SE(3). The exponential mapping describes
the motion of the rigid body in SE(3) from an initial position and orientation with respect to the fixed reference
frame. The Lie algebra se(3) is isomorphic to twist motion, and the twist the rigid body receives can be related to
Lie algebra se(3) associated with its Lie group. Thus, for any twist ¢ e se(3) in ray coordinates:

E=|® v e d” ™
= —> = =
0 0 v w |
where 4 is the shift operator. The linear motion generated by the twist of a point on the rigid body can be written as
V=—WXF+pWs where P, is the pitch of screw. Then the following expression can be obtained:

X WO (5 _ 0 0 ]
e”:{eo ( ¢ )I+p” e (8)

The exponential map created by this twist is a one parameter subgroup representing the infinitesimal twist motion
which consists of a rotation about the axis of the screw and a translation parallel to the screw axis. Consequently,
any rigid body motion can be written in terms of the exponential matrix using a twist about a screw. The exponential
matrix in SE (3) is surjective (onto mapping) on the set of twists as more than one instantaneous twist can produce

the same rigid body motion.

Rigid Branch

The zero configuration of the rigid branch indicating reference frames 0, 1, 2, 3, 6 and 7 attached to links 0, 1, 2,
3, 5 and the mobile platform respectively are shown in Figure 3(a). The Denavit-Hartenberg parameters [18] of the
mechanism are listed in Table 1, where 8, d; , a; and o; represent the joint angle, joint offset, effective link length

and twist angle, respectively. A fixed reference frame is attached at point O, to the base. Additional reference

frames are employed to formulate the motion of link 4 relative to link 1 (frame 5), and link 3 relative to link 4
(frame 4). The relative joint angles between these reference frames are denoted by 6, and s, respectively.
The orientation of the mobile platform can be written in terms of the parameters in Table 1 as

Ko, 15 ke, ke, 15 ko, ko . . . . . . .
Ry, =R,,=¢"e 2e"2e""e e "e"”, which can be simplified using properties of the matrix exponentials,
z Gz -
2 kby 2 e/ 2% where 923 — 92 + 93 , as:
RO = e; 0 6_7 O3 eI: %7 (9)
\m
The position of the origin of the coordinate system attached to mobile platform at O, can be written as
p g Yy p
p=d k,+a,i,—d k;+ai,, where d,, a,, d; and a, are the Denavit-Hartenberg parameters listed in Table
1. When expressed in the fixed frame, p becomes:



‘p=d ky+a,Ry,i—dgRysk+agRi (10)

. . 7 ~ iz ~ K
where the rotation matrices are defined as Ry,=e*%e 2e*%, R =R,,e"%e 2=l

— EHG_;H] _7923 l’;:gfw
Ryc=R ;e " =e"e e .

(b)

Figure 3 (a) Zero configuration of the rigid branch, (b) Rotating frames attached to a wire at the base.

Table 1 Denavit-Hartenberg parameters of the rigid branch.

Link Hi di a; 25
1 91 d1 0.1m 0 a; = /2
2 6, 0 a;=0.61 m 0
3 93 0 0 o3 = —7/2
5 96 d6:—0.1m 616:0.4811’1 0
6 6, 0 0 0

Expanding equation (10), the position equation can be obtained in terms of the joint variables as:
a, cos(6, )cos(6,)+ a; cos(6,)
"p=| a,cos(8,)sin(6,)+ag sin(6,) (11)
a, sin(0,)+d, —d,

where 8, =6, + ;. The closed loop provided by the parallelogram mechanism can be utilized to relate the passive
joint variables to the active joint variables. The loop closure equation for the parallelogram mechanism at point O, ,
d ky+a,i,—-2d ky,=—d k,+a,i,, can be resolved into the fixed frame as:

2d ky+a, Ry,i—2d¢Ry;k—a, Ry ,i=0 (12)
where a, is the effective link length along the i-axis of coordinate frame 4. Equation (12) consists of three scalar
equations, the first and third equations are as follows:

a, cos(6,)+2d, sin(6;)—a, cos(6,)=0 (13)
2d, +a, sin(6,)—2d, cos(6,,)—a, sin(6,)=0 (14)



Equations (13) and (14) can be used to solve for ¢, and 6; as §,=6, and 6,=-0, (also §,=-0,). Then
equation (9) reduces to:
cos(y) —sin(y) 0
Ry, =¢"" =|sin(y) cos(y) 0 (15)
0 0 1
where y=0,,, =0, + 6, + 6, is the pitch angle of the mobile platform. Given the pose of the mobile platform, the
joint variables can be found. Equation (10) can be simplified as:

0p=e’7‘9‘[aze'26’:'921'+a6e’:'96 iJ+(dl—d6)k (16)
For p"="p—(d, - d, )k and defining p, = Z =, the joint variable @, can be calculated as:
2
szatanZ(bl,'O' l—bfj,o-:il (17)

C p/a T . . .
Because of the joint limits, — 5 <6, < 5 is considered. Joint variable g, can be found as:

[ 240y —al~(ay cos(0,))
2a, a, cos(0),)

(18)

6, = ocos

Both solutions for 6, are considered since there is no joint limit. Joint variable 6, can be calculated as:

6, =2atan 2((—pi + cr\/pi2 + p;2 - (a6 sin(o96 ))2 J;(pzz +a, sin(o96 )JJ (19)

6, can be found from the orientation equation (15) as:

0, =y=6, -0 (20)

Wire Mechanism

Given the pose of the mobile platform, the kinematic parameters of the wires can be found in a similar manner.
The wire lengths can be calculated by using the closed loops established by the wires. From Figures 1 and 2, the
loop closure equations can be written as:

O,A +AB, =0,0,+0.B, ,i=12 (21)
0,4, + A,B, =0,C + CB, (22)

The wire vectors I, = A, B, for i =1,2, can be found relative to the fixed frame as:
I=p+R,,0,B,—0,4, ,i=12 (23)

Equation (22) can be expanded and rearranged to find the length of wire 3 in terms of the joint variables of the rigid
branch as:

I, = (az cos(é’2 )cos(é’1 )— s, cos(6’16 ))io + (az sin(6’2 )sin(é’1 )— s, sin(6’16 ))]0
+ (dl —dg )ko - 0,4,

where a, = ||CB3|| . From equations (23) and (24), the wire lengths and unit vectors n; associated with the line of

24)

action of each wire can be calculated.
Additionally, three coordinate frames with coincident origins at the base 4; (Figure 3(b)) are used for calculating

the unit vector along each wire. From fixed frame {00 }, the third frame which moves with the wire is obtained by
two rotations. The coordinate system {00} is located such that its origin is at A; while its axes are parallel to the
fixed frame located on the rigid branch atQ, . Then {0,} is obtained by a rotation about k, by an angle B - 0,} is
obtained by a rotation about j, by an angle £, . Thus a motion identical to that of a universal joint is obtained.



Thus, the wire vector n; can be written with respect to the fixed frame as n, = R ,, k = e*Pi el P | The wire

vector n; can be calculated relative to {OO} from the known attachment points on the mobile platform and on the
base and in terms of the kinematic variables as:

n; = cos(B, )sin(By, )iy + sin(B3, )sin(, ) jo + cos(f; Jkg (25)

The kinematic variables can be found as:
B = cos™ (niz) (26)
B, =atan 2(crnl.y; crnl.x) , 0= sgn(sin(ﬁzl. )) 27)
The expression for . in equation (27) is not defined if sin(8,,)=0, i.e., at f,, =0, 7 so that n, =+k,. In this case
/3, can be any arbitrary value. The orientation of the mobile platform can also be written in terms of the kinematic

variables used to define the motion of the wires. Hence, using zyx (roll-pitch-yaw) Euler angle sequence for
describing the spherical motion of wires 1 and 2 at their attachment points to the mobile platform, the orientation of
the mobile platform can be found. For wire 3, which is connected to link 5, the orientation of link 5 is used instead
of the mobile platform. The orientation of the mobile platform can be written as:

Ry, =P oIP kP TP T _ k7 (28)
After calculating B, and p,., equation (28) can be rearranged such that the known terms are collected in the

right side and called as matrix R as e"PielPu i = 7P o7 ok — Rl.*. For example, the orientation of

wire three can be obtained by using the orientation of the link to which the wire is attached as:

i =am”2(_r3*1i;0'1 Vl_r;liz j 0y =%l (29)

By =atan 2(0_”2*1,'; O"’1*1i)’ o= Sgn(cos( 4i )) (39)
Bsi :atanZ(Gr;;ar;) G
where oy = —Sin(ﬂ”): o :Cos(ﬂ:ﬁ )Cos(ﬂzu)’ P :Sin(ﬂ3i)cos(ﬂ4i), r3*2i :Cos(ﬁ4i)Sin(ﬁ5i)’ r;si = cos(ﬂM )Cos(ﬁSi)’ and V/:/f

denotes the elements of the rotation matrix R, for wire i. It should be noted that the expressions for g, and g, are

not defined if cos(ﬂ4i):0 so that Bo=%ml2. Inspecting the elements of the rotation matrix R., in this case the

1
summation f;; + f; can be found. Other Euler angle sequences such as zyz can be used as an alternative to the zyx
sequential rotations when the singularity of roll-pitch-yaw occurs.

2.3. Workspace Analysis

The workspace of a manipulator can be investigated using either the forward or inverse position analysis. The
forward position analysis can be used for obtaining the workspace of the manipulator by varying the joint variables
within their limits. The maximum and the minimum values of the position can be stored to obtain the workspace.
Alternatively, choosing points in the Cartesian space, the inverse position analysis could be performed to identify
the points that lie in the workspace of the manipulator. The workspace of the wire-actuated parallel manipulator is
investigated based on the inverse position analysis formulated in Section 2.2.

A computer program is written in Matlab to obtain the 3D workspace of the manipulator using cylindrical
coordinates. The workspace of the manipulator is calculated by identifying and recording the internal and external
boundaries of the workspace in planes parallel to the horizontal plane (Y(Z, plane) within a defined minimum and
maximum elevation of the mobile platform (in the X, direction). The input to the program includes the lower and
upper elevation for the mobile platform, and minimum and maximum values for the search radius and angle.

To identify the internal and external boundaries, the calculated joint variables and wire lengths are compared
with the allowable joint ranges of 0< 6, <27 for i=1,6,7 and —z/2< 0,<m/2, and the maximum wire lengths, to

verify that the point can be reached. In the internal search algorithm, for a search angle, the radius is incremented
starting from zero and the value for the far most reachable point for that angle is recorded in an array. In the external
boundary search, the array of radii obtained as the internal boundary is used as the initial search radii. Then, for each
value of the search angle, the radius is incremented until a point, which is outside the workspace, is identified.
Then, the point before that, inside the workspace, is collected. The radii collected from this procedure are recorded
in another array. The three dimensional workspace of the manipulator is obtained after recording the internal and



external boundaries of the workspace in planes parallel to the Y,Z, plane for the incremented coordinates in the X,
direction. The three dimensional workspace of the manipulator is illustrated in Figure 4(a). The simulation program
allows the possible limitations in the joints of the rigid branch because of the link/wire interference. To illustrate
this, another simulation is performed with constraints of the prototyped manipulator, i.e., —r/ 36<6,<7x/18,

—77/18<6,<7x/18 and —87/9< @, <87 /9. The result is shown in Figure 4(b).

1

2 Z0(m) 1 .05
Yom) Yo(m)

(a) (b)

Figure 4 Workspace of the wire-actuated parallel manipulator (a) simulated one (b) prototyped one.

Z0(m)

2.4. Velocity Analysis

Rigid Branch
The Jacobian matrix of the rigid branch can be formulated using its position and orientation equations. The time

derivative of equation (12), D, (d, k, )+ D, (a, i,)— 2Dy (d, ky)= Dy(~d, k, )+ Dy(a, i, ), is simplified as:
Woo XAy by =2Ws 0 xdgks =w, 0 xa,i, (32)
where w,,, =0, k, +0,k,, wy,, =0, k, +0, k, +0,k,, and w,,, =0, k, + 0, k. Then using rotation matrices

3 ~T ~T

. T
Ko ' ko '3 k. : =~ i %o, . =~ F =~ i ke .
Ry, =c¢""e? and R ;=e""e?e"™, and defining J, =a,ke 2e**i-2d ke’ k—-a,ke 2e"% i,
, ) 1
FLI. FLI. FLIU.
T 23 7o 273 -7,
Jo, =ae *ke"“it+2dse > je 'k, J, =2dse > je! ™k and J, =-a,e

can be found as:

" k e’7 %, a matrix equation
Jo 0 +d, 0,+J, 0,+J, 0,=0 (33)

Simplifying this equation using the equality of link lengths and the relations between the joint variables of the
parallelogram mechanism, the relation between the joint velocities can be obtained as:

HG KN
0 rooi e, 0 116,
where J ;,1 and J, are constructed from the two scalar independent equations of equation (33).
Taking into account that 6, = 6?3 = —6?2 , the passive joint velocities (93 , 94 , 95) of the parallelogram mechanism
can be related to the active joint velocities (91 , 92) by a Jacobian matrix J ? as:
ol [0 =1ry o
0,|=0 -1 L}I}J;’L}l} (35)
O;| |0 1]-7 ?
The linear velocity of the mobile platform (origin of frame 7) in terms of the joint velocities of the constraining
branch can be written as v, =D, (d, ky)+ Dy(a, i,)— D, (d, ky)+ D, (a, iy ) and simplified as:



Vo, =Wy 0 X ayly =Wy, 0 X dgky +We o % ag g (36)

where w,,, =0, k, + 0, k, + 0, k, + 0, k, . The angular velocity of the mobile platform can be written as:

w=0ky+0,k +0,k,+0,k, +0,k, (37)
The velocity equation of the mobile platform can be resolved into the fixed frame as:
0
0, H.l —a,c0,56,—a;s6,, —a,c6s0, —as6, 0
{ o Or } =J, 9,2 Sy a,cO,c0 +a,cl, —a,s6s0, acl, O (38)
W 6 & 0 a,cl, 0 0
0, 1 0 (B

The tip point Jacobian matrix relates the velocity [OvT ! ]T of the point of application of the external wrench
on the mobile platform to the fixed frame, as:

{;v}:{l R,; 7507,1,}{ :0} (39)
w 0 1 w

where Po, » is the displacement vector from the origin of the mobile platform coordinate frame to the point of

application of the external wrench.
The independent joint velocities of the rigid branch can be calculated as:

0,
= 40
A @
o,

where J* isthe 4x 6 generalized inverse of the Jacobian matrix.
The velocity of the dependent joints of the parallelogram mechanism is obtained using equations (35) and (40) as:

0.3 : #

. J 0 0

o, |=gr| % |y (#)lr Jlsar =16 (41)
0 0, )| w w

5

where the 3x6 Jacobian matrix J!" relates the dependent joint rates to the velocity of the mobile platform. The first
two rows of the generalized inverse Jacobian matrix of the rigid branch, (J #),r, (J # )zw are used to obtain J" . Thus,
all the joint velocities in the rigid branch are related to the task space coordinates.

Vire Mechanism

The first order kinematics of the wires can be performed by utilizing the loop closure equations. Differentiating
the loop closure equations for wires one and two:

ii+wzwixli=v+wxr073 (42)

where [, is the time rate of change in the length of wire i, wy =B ko + B Ji»

w=L, ko + Py j, + Py ky + B js + Ps; i, is the angular velocity and v is the linear velocity of the mobile
platform. Equations (42) can be arranged to obtain:

. _ Ov wi Ov
qwi:(‘]wi)l‘]m|:007:|:‘]m|:007:| (43)

w
where ¢ . = [ﬁli B L By B B ]T is a vector composed of the time rate of change of the wire parameters,

_ EO[ Oli R0,1i7 Oli O”i 0 0

wi . . .| and sz{l ~Ro p 073'} are respectively the
ky, R, J 0 R,k Ry, R, 0 I



Jacobian matrices related to the kinematic variables of wire i and to the velocity of the mobile platform. The
Jacobian matrix relating the point of application of the external wrench to the wire velocity is:

0 ~

4 I —-R,, Po»r iV .

= mEGE g =Jq. 44

|:0 w :| |:0 I ( m ) qm W q ( )
The velocity equation for wire three can also be obtained by differentiating its loop closure equation as:

Iy +w,ys xly=vy —wg X (as +ag, )ie (45)
where g, =|CB,| is the distance from the attachment point of wire three to point C on link 5 with its frame labelled
as frame 6, and wy,, = B ko + Py Ji + By ky + Bz J3 + Bsy iy :(91 + 6, )kO is the angular velocity of link 5
with respect to the fixed coordinate frame. To relate the wire velocity to the mobile platform velocity, equation (44)

is used with different expression for J,, , which is obtained by eliminating the intermediate joint rates 96 and 97 as

J = 10 4 (a(, * a"/’) (l:" Ros i“)((']#)r * (J#)3r) . The tip point Jacobian matrix can also be found for the
"o o k (%), +(J#)3rl)

third wire using equation (44).
Any set of velocities, e.g., active, passive or task space velocities of the manipulator can be related to another by
using the Jacobian matrices formulated in this section. For example, the velocity of active joints and time rate of

change of wire lengths ¢, = [(91 92 il iz i3 ]T can be related to the velocity of mobile platform by extracting the

associated rows of the Jacobian matrices from J ", J?. i=1...3 , via a 5x6 Jacobian matrix J as:

(), |
(7

. Y Oy

2.5. Acceleration Analysis

The acceleration analysis discussed in this section can be used in obtaining the inertial forces, and hence, in
formulating the equations of motion of the wire-actuated parallel manipulator.

Rigid Branch
The acceleration of the passive joints in the parallelogram mechanism can be related to the acceleration of the
active joints. Using the angular accelerations of links; a,,,=D,(w,,,)=0, ko + 6, k, +w,,, x (6?2 k, ),
%30 :Do(w3/o): él ko + éz Ky +wy % (92 k1)+ 93 ky +wy0 % (93 kz)’ Q40 :Do(w4/o): él ko + és ks +wgox (95 ks);
the second derivative of equation (12), DZ(d, k,)+ DZ(a, i, )+ DZ(-2d, k;)= D (- d, k, )+ DZ(a, i), is simplified as:
@0 % (an By )+ Wy 0 X Wy 0 % (ay iy )+ @50 X (= 2dg by )+ w30 x (w30 x (- 2d ky)) =
LV (a4 i4)+ Wyro X (W4/0 X (a4 i ))
The relation between the active and passive joint accelerations of the parallelogram mechanism can be obtained as:

(47)

6,1 [0 —1].. .
6,|=|0 -1 {el}zh‘[%} (48)

6,1 |0 1 %, %

The mass centre accelerations of the moving links in the parallelogram mechanism can be calculated as:
ag, =D, (VGZ ): Oy % (”Gz iz)"’ Wiso X (wz/o X (”Gz i » (49)
ag, =D, ("G3 ): Gy % (a2 iz)"’ Wy0 X (Wz/o x (a2 i ))"’ G370 % (_ TG, k3)
(50)
TW;0 X (W3/0 X (_ 7o, ks ))

ag, =D, (VG4 ): Gyro X (”64 i4)+ Wyso X (w4/0 X (”64 i » (51)
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where r; represents the distance of the mass centre of link i from the origin of its coordinate system.

The linear and angular accelerations of the mobile platform can be written in terms of the acceleration of the joint
variables by differentiating equations (36) and (37) as follows:

@70 =0y XAy Iy + W), X (Wz/o Xa, i, )—a3/0 xdgky —wy % (W3/0 xdg k3)

. . (52)
T o Xdglg+ Wq, 0 X (W6/0 X dg ’6)

%79 :él k, +é2 ki +wy, Xéz k, +é3 ky+wy ><6.’3 k, +é6 ky+wsy, Xé6 k; (53)
+t§7k6+w6/0><6.’7k6

where . Equations (52) and (53) can be

Og10 =01 kg +0, k; +w, g x0, ki + 05 ky +w, 0 X0 ky + 0 ky + w3, x06 ky

resolved into the fixed frame and simplified by using the results of the position and velocity analyses to obtain a
relationship between the angular acceleration of joints and the acceleration of the mobile platform as:

Qo .. ST
|: :| = Jtp g + g G g (54)
%0

The expression for the three dimensional matrix G is given in [19].The joint acceleration can be written in terms
of the mobile platform acceleration as:

.. a, a,
i :J;L }+[a; a;]J;o(J;TGJ;)L } (55)

m m

where the generalized tensor product 4o B=a; b, is used in equation (55) (the quadratic term) so that the
dimension of J[’; O(J[’;TG J[’;) is 4x6x 6. Mass centre acceleration of the mobile platform can be obtained by

using the results of the acceleration analysis of the origin of the mobile platform coordinate frame. Thus,
aG, /0 =@7,0 T 07,0 %Fgc, T W7/0% (W7/0 XTo.q, ) (56)

Wire Mechanism

The acceleration analysis of the wires can be performed by differentiating loop closure equations. Differentiating
equation (42) and simplifying, the acceleration of the mobile platform can be written in terms of the velocity and
acceleration of wires one and two (attached to the mobile platform) as:

0
0,

; a
J qwi :Jl‘:l” Oa +qwiT Gwi qwi > i:1’2 (57)

qwi

The three-tensor in the quadratic term of equation (57) is derived as follows. The first three matrices of the three
dimensional array G, are calculated from the linear accelerations by resolving the Coriolis and centripetal
acceleration terms into the fixed frame:

6 6 2 2 2 ~
. ~p o~ i\ - . ~ 3). . ~ i -
Qi = 21 Zlqwir (eir Yo.5, € )qui -2 Zlqwir (eir e )qwi3 - 21 Zlqwir (eir l; e} )qwij (58)
r=lj= r= r=lj=
where the indicial notation is preferred to represent the quadratic form. The tensors in equation (58),
e/ , j=1,...,6, are the upper three entries of the j™ column of J qwi - Denoting the tensors inside the quadratics as

;=

a’ =¢’ 707 zel, b/ 3= 2e’ el.3 , el =gt lNl.el." ; the three matrices of G,; can be written in tensorial form as:
g:jt;/i:a:j_b:j_c:j :S:L"':3 (59)
The nonzero entities of g related to indices 7, j are of dimension 2; they are increased to 6 (dimension of the
vector of kinematic variables of wires) by adding zeros. Thus, three of the 6x 6 matrices in the s™ index of G, are

obtained. The last three matrices of G, are calculated from the angular acceleration. Detailed expressions of G ,;

are included in [19].
The acceleration of wire 3 is related to the mobile platform by taking the time derivative of equation (45):

.. wl @m . . w5 . :
qu3 qw3 = Jm |: :| + qw3 ! Gw3 qw3 + J496 06 + qw3 ! Gw32 06 (60)
a

m
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where g :{(a"-’-a"”lR""’J } The first three matrices of 6xIxl G, , can be found as
‘ RO,()

3 . 3
G,, :(a6+a6p )kz—lgk Ry¢j while the last three terms can be found as G, :Elgk k, - The vectors e, are

respectively the upper parts and the lower parts of the k™ column of J »3 for the first three and the last three

matrices of G, ,. Thus, any set of coordinates can be written in terms of another.

3. DISCUSSION AND CONCLUSIONS

In this article, the kinematic analysis of a wire-actuated parallel (closed-loop) manipulator was discussed. The
mobility of manipulator was investigated. A group theoric approach to the rigid body motion was considered. Lie
groups and algebras associated with the Lie groups, exponential maps and its application to kinematics were
introduced briefly. In general, kinematic analysis of closed-loop manipulators requires establishing the relations
among the passive and active joint variables and task space coordinates. A framework for the kinematic
(displacement, velocity and acceleration) analysis of closed-loop manipulators based on the matrix exponentials and
transfer of coordinates was introduced and applied on a 4 DOF wire-actuated parallel manipulator. The matrix
exponentials provide a compact representation of the equations for expressing kinematic equations, and the rich
algebraic properties of the matrix exponentials give a more suitable basis for manipulation and simplification of the
kinematic equations. This methodology was used effectively to formulate the first and second order kinematics
(velocity and acceleration) of the manipulator, and map the corresponding kinematic variables between the
generalized coordinates, the taskspace coordinates and the passive joint coordinates of the manipulator. These
formulations have been used in the force and stiffness analyses of the manipulator in [11, 12].
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