
Geometric Optimization of Planar 3-RPR Parallel Mechanisms

Qimi Jiang1, Clément M. Gosselin2
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Abstract To pursue the maximal singularity-free workspace of parallel mechanisms is a very
important concern for robot designers. This paper focuses on the case of planar 3-RPR parallel
mechanisms. First, a relatively simple singularity equation of any point on the platform is derived.
The obtained singularity equation shows that the singularity locus of any point on the platform is
a circle of the same size, as long as the base and the platform are similar triangles. Furthermore,
the three centres of the workspace circles lie exactly on the singularity circle. With these useful
observations, the singularity-free workspace as well as the maximal leg length ranges can be deter-
mined. For a base of unit area, it is found that robots with equilateral triangle base and platform can
obtain the maximal singularity-free workspace. Three case studies demonstrate this observation.
Finally, a procedure for this kind of robot geometric design is provided.

Keywords: Planar 3-RPR Parallel Mechanisms, Workspace Circle, Singularity-Free Workspace,
Geometric Optimization.

Optimisation Géométrique des Mécanismes Parallèles Plans de Type 3-RPR

Résumé Déterminer l’espace de travail maximal sans singularité des mécanismes parallèles est
un souci très important pour les concepteurs mécaniques de robots. Cet article se concentre sur le
cas des mécanismes parallèles plans de type 3-RPR. Premièrement, une équation simple donnant
l’ensemble des lieux de singularité du mécanisme étudié est présentée. Cette équation de singu-
larité obtenue démontre que le lieu de singularité de chaque point sur la plate-forme est un cercle de
même dimension, et ce aussi longtemps que la base et la plate-forme sont des triangles semblables.
En outre, les trois centres des cercles déterminant l’espace de travail sont situés directement sur
les cercles de singularité. Avec ces observations utiles, l’espace de travail libre de singularité ainsi
que la longueur maximale des membrures peuvent être déterminés. Pour une base d’aire unitaire,
il est montré qu’un mécanisme ayant à la fois la plate-forme et la base de la forme d’un triangle
équilatéral possède l’espace de travail sans singularité maximal. Trois cas présentés démontreront
cette observation. Finalement, une procédure de conception pour des robots de cette géométrie
sera donnée.

Mots clé: Mécanismes Parallèles Plans 3-RPR, Cercle de Zone de Travail, Zone de Travail
Libre de Singularité, Optimisation Géométrique.
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1 INTRODUCTION

Parallel mechanisms have many advantages over serial mechanisms in load-carrying capacity, sta-
bility, etc. However, the closed-loop nature of their architecture limits the motion of the platform
and creates complex kinematic singularities inside the workspace. Hence, to pursue the maximal
singularity-free workspace of parallel mechanisms is highly desirable for robot designers.

Several researchers addressed the issue of avoiding singularities inside the workspace of a par-
allel mechanism. Merlet [1] presented a fast algorithm for solving the problem of trajectory val-
idation for a 6-DOF parallel mechanism with respect to its workspace. Bhattacharya et al. [2]
proposed an exact method and an approximate method to determine a path which can avoid singu-
larities and remain close to a prescribed path. Dash et al. [3] presented a numerical technique for
path planning inside the workspace of parallel mechanisms avoiding singularities.

Three types of singularities were defined by Gosselin and Angeles [4; 8]. They are the inverse
kinematic singularity, the direct kinematic singularity and the architecture singularity. Each of
them has a different physical interpretation. Later, another type of singularity referred to as com-
bined singularity or constraint singularity was identified by Zlatanov, et al. [6]. Among all these
types of singularities, the direct kinematic singularity is the main concern for robot designers. It
corresponds to configurations in which the stiffness of the mechanism is locally lost. This type
of singularity is also called RO (Redundant Output) in Zlatanov et al. [7]. This paper focuses on
analyzing this type of singularity of 3-RPR parallel mechanisms, which have been studied by sev-
eral researchers (see for instance ([8]–[18])). However, this paper will propose a new approach to
obtain the maximal singularity-free workspace by optimizing the geometric parameters.

2 SINGULARITY ANALYSIS

As shown in Fig.1, a planar 3-RPR parallel mechanism with actuated prismatic joints consists of a
fixed triangle base 4B1B2B3 and a mobile triangle platform 4P1P2P3. Bi and Pi are connected
via the actuated prismatic joint of variable length ρi(i = 1, 2, 3). Passive revolute joints are located
at Bi and Pi, and the mechanism has 3 DOFs. The moving platform can translate in the xy plane
and rotate with respect to an axis perpendicular to the xy plane.

2.1 Singularity Equation

To derive the singularity equation, two coordinate systems are defined as shown in Fig.1. A refer-
ence frame Oxy is attached to the base by selecting B1 as the origin O and B1B2 as the x axis. The
mobile frame O′x′y′ is attached to the platform by selecting P1 as the origin O′ and P1P2 as the x′

axis. The position of Bi in the fixed frame Oxy is denoted by vector bi = [xbi, ybi]
T (i = 1, 2, 3)

and the position of Pi in the mobile frame O′x′y′ is denoted by vector p′
i = [x′

pi, y
′
pi]

T (i = 1, 2, 3).
bi and p′

i are constant vectors in their respective frames.
Let vector pr = [xr, yr]

T denote the position of the origin O′ of the mobile frame in the fixed
frame and Q be the rotation matrix representing the rotation of the platform from frame Oxy to
frame O′x′y′ with

Q =

[
cos φ − sin φ
sin φ cos φ

]
(1)
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If the position of the considered point P of the platform in the fixed and mobile frames are respec-
tively p = [x, y]T and p′ = [xp, yp]

T , then

p = pr + Qp′ (2)

or
pr = p−Qp′ (3)

So, the position of Pi(i = 1, 2, 3) in the fixed frame can be expressed as

pi = pr + Qp′
i = p + Q(p′

i − p′) (4)

The length of leg i is the distance between Bi and Pi. Hence

ρ2
i = (pi − bi)

T (pi − bi) (5)

Differentiating eq.(5) with respect to time, one obtains

Av = Dρ̇ (6)

where ρ̇ = [ρ̇1, ρ̇2, ρ̇3]
T denotes the actuator velocities and v = [ẋ, ẏ, φ̇]T the Cartesian velocity

vector of the platform. A and D are two Jacobian matrices.
Referring to Fig.1, suppose, without loss of generality, that the coordinates of Bi in the fixed

frame Oxy are actually B1(0,0), B2(t1,0) and B3(t2, t3) and the coordinates of Pi in the mobile
frame O′x′y′ are P ′

1(0,0), P ′
2(t4, 0) and P ′

3(t5, t6). The condition for the direct kinematic singularity
is det(A) = 0. From this and considering the above coordinates of Bi and Pi (i = 1, 2, 3), the
singularity equation can be obtained as follows:

G1x
2 + G2y

2 + G3xy + G4x + G5y + G6 = 0 (7)

Figure 1: Planar 3-RPR parallel mechanism.
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where 

G1 = g1 sin φ
G2 = g2 sin φ + g3 cos φ
G3 = −g3 sin φ + g4 cos φ
G4 = g5 sin2 φ + g6 cos2 φ + g7 sin φ cos φ + g8 sin φ
G5 = g9 sin2 φ + g10 cos2 φ + g11 sin φ cos φ + g12 sin φ + g13 cos φ
G6 = g14 sin φ + g15 cos φ + g16 sin2 φ + g17 cos2 φ + g18 sin φ cos φ

(8)

and 

g1 = −t3t4 g2 = −t1t6
g3 = t1t5 − t2t4 g4 = t3t4 − t1t6
g5 = (t2 − t1)t4t5 + (t1t5 − t2t4)xp + t3t4(t6 − 2yp)
g6 = (t1t6 − t3t4)yp

g7 = t4(t2t6 − t1t6 − t3t5) + (t1t6 + t3t4)xp + (t1t5 − t2t4)yp)
g8 = t1t3t4
g9 = t1t6(2xp − t4) + (t2t4 − t1t5)yp

g10 = t4(t3t5 − t2t6) + (t1t6 − t3t4)xp + 2(t2t4 − t1t5)yp

g11 = t4(t1t5 − t2t5 − t3t6) + (t2t4 − t1t5)xp + (t1t6 + t3t4)yp

g12 = t1(t2t5 − t2t4 + t3t6)
g13 = t1(t2t6 − t3t5)
g14 = t1t6xp(t4 − xp) + (t1t5 − t2t4)xpyp + (t2t5 + t3t6 − t1t5 − t3yp)t4yp

g15 = (t3t4 − t1t6)xpyp + (t2t6 − t3t5)t4yp + (t1t5 − t2t4)y
2
p

g16 = t1[(t2t4 − t2t5 − t3t6)xp + t3t4yp]
g17 = (t3t5 − t2t6)t1yp

g18 = (t3t5 − t2t6 − t3t4)t1xp + (t2t4 − t2t5 − t3t6)t1yp

(9)

If P1 is taken as the considered point P , eq.(7) takes exactly the form given in [10].

2.2 Singularity Locus

In general, the singularity locus for a given orientation can be a hyperbola or a parabola or an
ellipse [10]. Ellipses may degenerate into circles. By observation of eqs.(7)–(9), it is not difficult
to find that if t4/t1 = t5/t2 = t6/t3 = k (k is the size ratio between the platform and the base),
then g3 ≡ g4 ≡ 0. As a result, G1 ≡ G2 and G3 ≡ 0. In this case, the base and the platform are
similar triangles, and the singularity locus expressed by eq.(7) is a circle [11]. The centre C(xc, yc)
and radius R of the singularity circle can be given as follows:

xc = {[k(t22 − t1t2 + t23)− 2t3yp] sin φ + (2xp − kt1)t3 cos φ + t1t3}/(2t3)
yc = {(2xp − kt1)t3 sin φ + [k(t1t2 − t22 − t23) + 2t3yp] cos φ + t22 − t1t2 + t23}/(2t3)
R =

√
[(t1 − t2)2 + t23](t

2
2 + t23)(k

2 − 2k cos φ + 1)/(2t3)
(10)

Eq.(10) shows that for a given orientation φ 6= iπ(i = 0, 1), only the centre of the singularity
circle depends on the position of the considered point P . But the radius does not. When φ =
iπ(i = 0, 1), the whole plane becomes singular. Fig.2 shows the evolution of the radius R of the
singularity circle with respect to the size ratio k and the orientation angle φ.
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3).

3 SINGULARITY-FREE WORKSPACE

Referring to [12], the workspace equations of 3-RPR parallel mechanisms can be obtained by
expanding eq.(5) for three legs as follows:

ρ2
1 = [x− (xp cos φ− yp sin φ)]2 + [y − (xp sin φ + yp cos φ)]2

ρ2
2 = [x− (xp cos φ− yp sin φ− t4 cos φ + t1)]

2 + [y − (xp sin φ + yp cos φ− t4 sin φ)]2

ρ2
3 = [x− (xp cos φ− yp sin φ− t5 cos φ + t6 sin φ + t2)]

2

+[y − (xp sin φ + yp cos φ− t5 sin φ− t6 cos φ + t3)]
2

(11)
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For a given orientation φ, these are three circle equations. These circles can be referred to
as workspace circles, because they are used for determining the workspace. The three centres
Ci(xci, yci)(i = 1, 2, 3) of the workspace circles are

xc1 = xp cos φ− yp sin φ
yc1 = xp sin φ + yp cos φ
xc2 = xp cos φ− yp sin φ− t4 cos φ + t1
yc2 = xp sin φ + yp cos φ− t4 sin φ
xc3 = xp cos φ− yp sin φ− t5 cos φ + t6 sin φ + t2
yc3 = xp sin φ + yp cos φ− t5 sin φ− t6 cos φ + t3

(12)

The distances between the centre C(xc, yc) of the singularity circle and the centres Ci(xci, yci)
of the workspace circles are

di = CCi =
√

(xci − xc)2 + (yci − yc)2 (i = 1, 2, 3) (13)

Substituting eqs.(10) and (12) into eq.(13), one obtains di ≡ R(i = 1, 2, 3). This means that for
similar base and platform, the three centres of the workspace circles lie exactly on the singularity
circle, as shown in Fig.3. Besides, from eq.(12), one obtains

C1C2 = B1B2

√
k2 − 2k cos φ + 1

C2C3 = B2B3

√
k2 − 2k cos φ + 1

C3C1 = B3B1

√
k2 − 2k cos φ + 1

(14)

Eq.(14) shows that triangle 4C1C2C3 is also similar to the base. Its area is

S = (k2 − 2k cos φ + 1)Sb (15)

where Sb is the area of the base triangle 4B1B2B3. For a base of unit area (Sb = 1), S is constant
for a given orientation φ.

To determine the singularity-free workspace, the minimal leg lengths ρi,min(i = 1, 2, 3) should
first be prescribed. As the minimal leg lengths depend on the physical architecture, they can be
initially chosen as the same. With this assumption, the maximal leg length ρi,max(i = 1, 2, 3) can
be determined with the following procedure (taking Fig.3(a) as a example):
Step 1: Compute C(xc, yc) and R using eq.(10) as well as Ci(xci, yci)(i = 1, 2, 3) using eq.(12).
To compute C and Ci, it is necessary to provide the coordinates of the considered point P in the
mobile frame. For convenience, take the centroid of the platform as the considered point P . Hence,
xp = (t4 + t5)/3, yp = t6/3.
Step 2: The intersections Ni and N ′

i(i = 1, 2, 3) of the minimal workspace circles and the singu-
larity circle can be computed with eq.(16) as follows:{

(x− xci)
2 + (y − yci)

2 = ρ2
i,min (i = 1, 2, 3)

(x− xc)
2 + (y − yc)

2 = R2 (16)

Step 3: Compute ρi,max(i = 1, 2, 3):
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• Compute the distances between the centre C1 and the two intersections N3 and N ′
2: C1N3

and C1N ′
2. Then take the shortest of these distances (here C1N3) as ρ1,max in order to avoid

singularity inside the workspace.

• Compute the distances between the centre C2 and the two intersections N1 and N ′
3: C2N1

and C2N ′
3. Then take the shortest of these distances (here C2N ′

3) as ρ2,max.

• Compute the distances between the centre C3 and the two intersections N2 and N ′
1: C3N2

and C3N ′
1. Then take the shortest of these distances (here C3N2) as ρ3,max.

With the obtained maximal leg lengths, three maximal workspace circles respectively centred at
Ci(i = 1, 2, 3) are available. Fig. 3(a) shows only the parts of these circles lying inside the singu-
larity circle, i.e., three arcs: M1N3, M2N

′
3 and M3N2. Arc M1N3 intersects the second minimal

workspace circle at M4 and arc M2N
′
3 intersects arc M3N2 at M5. The hatched region formed by

five arcs, M4N3N
′
3M5N2M4, is the singularity-free workspace for the considered case.

For general similar base and platform, the maximal leg lengths ρi,max(i = 1, 2, 3) may be
different from one another. Besides, Fig. 3(a) shows that the minimal length of leg 1 will be C1M5,
which is greater than its initially chosen value.

4 GEOMETRIC OPTIMIZATION

4.1 Maximal Singularity-Free Workspace

For a base of unit area , t3 = 2/t1. Substituting this equation into eq.(10), R will be a function of
t1, t2, k and φ. To obtain an extremum of R, the following conditions should be satisfied:

∂R/∂t1 = 0
∂R/∂t2 = 0
∂R/∂k = 0
∂R/∂φ = 0

(17)

Unfortunately, there is no real solution for this equation set. However, for given nonzero k and
φ 6= iπ(i = 0, 1), a real solution can be obtained from the first two equations of eq.(17), i.e.,
t1 = 2/ 4

√
3, t2 = 1/ 4

√
3. As a result, t3 = 4

√
3. The obtained base is actually an equilateral triangle.

In this case, one has

R = 2

√
(k2 − 2k cos φ + 1)/

√
3 ' 0.877

√
k2 − 2k cos φ + 1 (18)

Hence, for given k and φ, eq.(18) provides the extreme radius of the singularity circle for a
base of unit area which is obtained when the base and the platform are equilateral triangles. Since
triangle 4C1C2C3 is similar to the base triangle 4B1B2B3, then triangle 4C1C2C3 is also equi-
lateral. As a result, the three centres Ci(i = 1, 2, 3) of the workspace circles are evenly distributed
on the singularity circle, as shown in Fig 3(b). In this case, both ρi,min and ρi,max are equal for
i = 1, 2, 3, and the obtained singularity-free workspace (the hatched region) occupies most of the
region inside the singularity circle.
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However, the extreme radius given by eq.(18) for given k and φ is not a maximum, but a min-
imum. From eq.(15), it can be seen that for given k and φ, triangle 4C1C2C3 has the same
area, no matter what its shape is. And the singularity circle is the circumscribed circle of trian-
gle 4C1C2C3. When triangle 4C1C2C3 is equilateral, its circumscribed circle becomes minimal.
Although the minimal singularity circle occurs when the base and the platform are equilateral tri-
angles, the singularity-free workspace may be maximal. To demonstrate this point, consider the
following three case studies.

Case 1: In Fig.3(a), the base geometric parameters are: t1 = 1.8, t2 = 1.2, t3 = 1.11, which
form an acute triangle of unit area. Substituting the values of t1, t2 and t3 into eq.(10), one obtains

R = 0.929
√

k2 − 2k cos φ + 1 (19)

Case 2: In Fig.3(b), the base geometric parameters are: t1 = 2/ 4
√

3, t2 = 1/ 4
√

3, t3 = 4
√

3,
which form an equilateral triangle of unit area. The radius of the singularity circle is given by
eq.(18).

Case 3: In Fig.3(c), the base geometric parameters are: t1 = 1.8, t2 = 2.2, t3 = 1.11, which
form an obtuse triangle of unit area. Substitute the values of t1, t2, t3, into eq.(10), one obtains

R = 1.310
√

k2 − 2k cos φ + 1 (20)

Comparing eq.(18) to eq.(19) and eq.(20), it is easy to find that when the base and platform are
equilateral triangles, the singularity circle is minimal. To compare the singularity-free workspace
in these three cases, consider for instance the situation with k = 0.6, φ = 45◦, and ρi,min is
initially chosen as 0.2. First, compare case 1 to case 2. The radius of the singularity circle in case 1
is 0.665, which is larger than that (0.627) in case 2. But the area of the singularity-free workspace
in case 1 is only 0.729, which is smaller than that (0.918) in case 2. Then, compare case 3 to
case 2. Although the radius of the singularity circle in case 3 is 1.494 times of that in case 2,
the singularity-free workspace occupies no more than one-third of the region inside the singularity
circle (see Fig.3(c)). The numerical results show that the area of the singularity-free workspace in
case 3 is only 0.545, which is smaller than that (0.918) in case 2.

The reason for which a robot with a larger singularity circle has a smaller singularity-free
workspace is that the centres of the workspace circles , Ci(i = 1, 2, 3), are not evenly distributed
on the singularity circle. For given k and φ, the area of triangle 4C1C2C3 does not vary with its
shape. It is easy to imagine that for case 3 with an obtuse triangle base, when the obtuse angle be-
comes larger, the vertices of the triangle 4C1C2C3 will lie on an arc close to a line. Although the
singularity circle may be very large, the singularity-free workspace occupies only a small corner
of the singularity circle (see Fig.3(c)).

4.2 Location of the Singularity Circle

Eq.(10) shows that the centre of the singularity circle is dependent on the position of the considered
point P and the orientation angle φ. Take the centroid of the platform as the considered point P ,
the centre of the singularity circle for case 1 in Fig.3(a) and case 3 in Fig.3(c) is dependent on the
orientation angle φ, as shown in Figs. 4(a) and 4(c). In these two cases, the locus of the centre
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(a) Acute triangle base

(b) Equilateral triangle base (c) Obtuse triangle base

Figure 3: The singularity-free workspace with different triangle bases.

of the singularity circle is a curve in the xyφ space. However, the centre of the singularity circle
for case 2 in Fig.3(b) always coincides with the centroid of the base Cb. As a result, the locus of
the centre of the singularity circle is a straight line in the xyφ space, as shown in Fig.4(b). With
this property as well as the symmetry, the parallel mechanism with an equilateral triangle base will
have better kinematic properties comparing to other architectures.

From the analysis of the maximal singularity-free workspace as well as the location of the
singularity circle, it can be seen that a planar 3-RPR parallel mechanism with an equilateral triangle
base is the optimal architecture.
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Figure 4: Evolution of the singularity circle vs φ (k = 0.6).

5 APPLICATION

5.1 Design Procedure

In general, after a robot has been designed and manufactured, the size ratio k cannot change. But
the orientation angle φ should cover a working range. Considering this point, the design procedure
for 3-RPR robots with equilateral triangle base and platform can be generalized as follows:

• Referring to Fig.2(a) and considering the physical architecture, select a proper size ratio k.

• According to the desired function, determine a range of the orientation angle: [φ1, φ2]. Note
that φ = iπ(i = 0, 1) should not be included in the prescribed range.

• Referring to Fig.2(a) or Fig.2(b), use eq.(18) to compute the corresponding range of the
radius of the singularity circle: [R1(φ1), R2(φ2)].

• Considering the physical architecture such as the size of one prismatic joint and two revolute
joints on one leg, determine the minimal leg lengths ρi,min(i = 1, 2, 3).

• Referring to Fig.3, take the centroid of the platform as the considered point, use the proce-
dure presented in Section 3 to compute the maximal leg lengths ρi,max(i = 1, 2, 3) in order
to determine the maximal leg length ranges.

• Choose a proper leg length range within the computed maximal leg length range for each leg
and complete the geometric design.

5.2 Example

To demonstrate the proposed design procedure, an example is now provided. The parameters of the
base are t1 = 2/ 4

√
3, t2 = 1/ 4

√
3, t3 = 4

√
3. The size ratio k is selected as 0.6 and the desired ori-

entation range of φ is [100◦, 165◦]. Taking the minimal leg lengths as 0.2. Then ρi,max(i = 1, 2, 3)
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is detemined by R1(= 1.099) as 1.995. The possible maximal leg length range is [0.2, 1.995] for
all three legs. Hence, the leg length ranges can be chosen from this computed maximal leg length
range, say [0.4, 1.8]. It can be guaranteed that no singularity exists inside the workspace of the
designed robot for the prescribed range of orientation.

6 CONCLUSIONS

The derived singularity equation shows that the singularity locus of any point on the platform is a
circle of the same size, as long as the base and the platform are similar triangles. Furthermore, the
three centres Ci(i = 1, 2, 3) of the workspace circles lie exactly on the singularity circle. These
interesting observations are very useful for the determination of the singularity-free workspace.
For an equilateral triangle base, Ci(i = 1, 2, 3) are evenly distributed on the singularity circle
which leads to the maximal singularity-free workspace.

Besides, symmetric architectures are widely used in practice. Hence, a geometric design pro-
cedure for 3-RPR robots with equilateral triangle base and platform is provided. The example
discussed above shows that as long as the working ranges of the leg length lie within the max-
imal ranges determined with the presented method and the orientation angle φ does not equal
iπ(i = 0, 1), it can be guaranteed that the workspace definitely lies inside the singularity circle.
The risk for encountering a singularity inside the workspace can be avoided completely. Therefore,
the information provided in this work will be of great significance for robot designers in practice.
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