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In this paper a new calibration strategy that does not regaiy sensors beyond those used to
control actuators is applied to the B parallel manipulator. Parallel manipulators have sdver
advantages over their serial counterparts, but have seéadi use because of low accuracy, among
other reasons. Calibration allows the kinematic modelithased to control the manipulator to be
adjusted to more closely replicate the physical manipuldtoe architecture and kinematics of the
3-PRS are presented, as well an explanation of this new calioratrategy. The strategy makes
use of direct kinematic singularities to obtain the reduntdiaformation required for calibration.
Implementation of the algorithm is accomplished via a reesegies of optimization problems, each
one accomplishing a simpler stage of the overall proceddisemulated calibration is performed,
and the algorithm successfully returns the exact valued tiesgenerate the test data.
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AUTO-CALIBRATION DU MANIPULATEUR 3-P _RS SANS SANSEURS REDONDANTS

Dans cet article, une nouvelle stratégie de calibrage gupas besoin d’aucun senseur autre de
ceux employés pour commander les actioneurs est appliguémanipulateur parallele 3RBS.
Les manipulateurs paralleles ont plusieurs avantagesapport aux manipulateurs en série, mais
leur utilisation est limitée a cause de leur basse exaldit entre autres raisons. Le calibrage
permet ajuster les parametres cinématiques pour gefilstent plus exactement le manipulateur
réel. L'architecture et la cinematique du &® sont présentées, aussi bien gu’une explication de
cette nouvelle stratégie de calibrage. La stratégiésasiles singularités cinématiques directes
pour obtenir I'information redondante nécessaire powalkbrage. Lexécution de I'algorithme
est accomplie grace a la solution de plusieurs probletreggimisation, chacune accomplissant
une étape plus simple du probleme global. Un calibrageil&irest utilisé pour demontrer que
I'algorithme renvoie avec succes les valeurs exactes@raps pour produire des essais.

Mots clés: Manipulateurs parallele, calibration, calibration &&ae singularités.




1 INTRODUCTION

It has been shown that, in general, kinematic manipulatooth(serial and parallel) have better
repeatability than absolute accuracy [1]. A position réear in joint space can be reproduced
within very small tolerances; whereas seeking arbitragrtpms in task space results in significant,
and often the case, unacceptable errors.

Errors such as these are caused by discrepancies betwetbiednetical kinematic model and
the real world implementation of the manipulator. The kiagimmmodel is the set of mathematical
equations that are used to translate task space coordin&igsint space coordinates and vice
versa. Because manipulators can only be controlled by ¢ch@nige position of their actuators,
they can only be controlled in joint space. When a discrepaxists between the theoretical
model and an actual physical model, inaccuracies shouldaibt be expected.

Minimizing these kind of discrepancies is the goal of alllmation procedures. Much work has
been done in the field of manipulator calibration for bothed¢2] and parallel [3, 4, 5] manipula-
tors. In both cases, four separate tasks are generallyreelioi calibrate a specific manipulator, as
defined by [6]: (1) modelling, (2) measurement, (3) idergificn and (4) correction.

Provided a suitable kinematic model is available, the patars of the model must be identified
to perform calibration of the physical manipulator. Thisidse done in a variety of ways [7, 8,
9, 10]; but in all cases the measured coordinates (eithesim ¢r task space) are compared to
theoretical ones. Kinematic parameters can then be cedaatforce the theoretical predictions
to conform to the measured values.

Lastet al. [11] proposed a new calibration strategy that allows peratlanipulators to be cal-
ibrated without any external sensor and without any aduktigoint sensors. Measured and theo-
retical joint space coordinates are obtained for direatikiatic singular configurations. Using the
disparity between these singular poses yields a residiakelea coordinates. The residual can be
minimized through the use of optimization strategies. Tém@ameters of this problem are the kine-
matic parameters of the mechanism, and, once optimizey vililereflect the physical geometry
of the manipulator.

The focus of this paper is to adapt Lastal.’s calibration method to the 3RS parallel ma-
nipulator proposed in [12]. A fixtureless calibration stgy using a motion capture system was
developed for this manipulator in [13]. Although the metheas shown to be effective to calibrate
a number of kinematic parameters, the experiments on thalhlamotion capture system had
much lower quality than expected. The self calibration rodthsed here removes the need for any
external sensors and allows calibration to be performeiiuras often as necessary. Unfortunately,
this method does require a forward displacement solutidmgiwhas no closed-form solution for
the 3-HRS [14]. This is a minor drawback, the result of which is a lengomputing time during
calibration.

What follows is divided into five sections. First, the kindgrmoathat govern the 3RS manipu-
lator are described; for both the inverse and forward despteent solutions. Next, a more detailed
explanation of the self calibration algorithm and a briefadission of its limitations are presented.
Third is a thorough treatment of the application of the alfpon to the 3-RRS, along with a validat-
ing computer simulation. The final two sections discuss @selts and provide some concluding
remarks.




Figure 1: The 3-RS parallel manipulator. Figure 2: Vector model of the 3HS.

2 KINEMATICS OF THE 3-PRS

The 3-HRS parallel manipulator is a three degree of freedom (3-Dgpitial manipulator. The
end effector is a mobile platform that is connected to a bgghree serial branches with identical
kinematic architecture. Each branch, from base to endteffezpnsists of an active prismatic joint
(P), a passive revolute joint (R), and a passive sphericat {&h An example of the manipulator
is shown in Figure 1.

Also shown in Figure 1 are the architectural parametersdfiatt the kinematics of the ma-
nipulator. These are the quantities being sought after éy#tibration process. Angles between
the prismatic joints are defined lay and 3; the radius of the end effector platformitg and is
defined as the radius of the circle that contains the centadl tiree spherical joints. Leg length,
l;, is defined as the shortest distance from the revolute jaistta the centre of the spherical joint,
and, due to manufacturing inaccuracies, may be unique fdr beanch. The inclination of the
prismatic joints of branclh is defined by angle; and is measured between the line of action of
the joint and the plane defined as the manipulator’s basesintn in the figure are the prismatic
joint offsets, dy;; these values represent the displacement of the prisnuatitgt the encoder’s
zero position. Although these offsets do not affect the kiagcs of the manipulator, they will be
required to operate the physical mechanism. As will be saten, lit is often convenient to express
the kinematic parameters as a vector:

k = [a, 8,7, 11, l2, 13,71, 72, 73, dot, doz, doz] (1)
It will be the purpose of the calibration process to obtaithese quantities.

2.1 Inverse Displacement Solution

The kinematics of the 3RS were first analysed by Carretesioal. [12], a revised set were de-
veloped by Pond and Carretero for their work on [15] whiclonporated the inclination of the
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prismatic joints (.e,, ). In both papers, an inertial frame is defined with tki& plane parallel
to the base platform, and th€ axis aligned with the projection of the prismatic joint ofibhch

1, onto theXY plane. It should be noted that the kinematic models in [12] [@®], as well as
most other robot kinematic models, are theoretical worksdb not take into account inaccuracies
such as joint offset or misalignment. For instance, the ggusderived in [15] assume that all the
prismatic joints intersect at a common point, the originte base frame. Furthermore, the rev-
olute joints are assumed to be perfectly perpendiculardditie of action of the prismatic joints,
as well as parallel to the base. Under these assumptiorfs spaerical joint is constrained to lie
on a plane perpendicular to the base plane, and paralle¢ fortbmatic joint of the corresponding
branch.

Restraining the motion of the spherical joints greatly difigs the constraint equations that
relate the dependent and independent task space variBelesuse the 3RS is a spatial manipu-
lator, the task space is composed of six variabdas, (x, v, z, ¢, ¢, #). However, the manipulator
has only 3-DOF, requiring that only three variables be ch@seindependent. These parameters
are all that is required to completely define the end effqmbee (position and orientation). Choice
of the independent variables is arbitrary, and should be@mbased on the task at hand; Carretero
et al. [12] used elevation of the platform (displacement alongtieetial Z axis), and two rotations
of the end effector about the inertial frame (angleandé about the inertialX andY axes, re-
spectively). Based on the constraints placed on the s@hguiats’ motion, it is possible to derive
a set of constraint equations which yield the three depdandeiables ¢, v, ¢) as a function of the
independent variables (v, 6).

Once the end effector pose has been completely describisdstitaightforward to determine
the required actuator positions necessary to attain thexided pose [12]. Each actuator will have
two solutions but one can be eliminated by inspecting thergery of the mechanism. Obtain-
ing the actuator positions from the specified task spacebi@s constitutes the complete inverse
displacement solution (IDS).

2.2 Forward Displacement Solution

The IDS focuses on obtaining actuator positions from taskakies. It follows naturally that the
forward displacement solution (FDS) provides end effeptme given actuator positions. The FDS
is not strictly necessary for position control of the R manipulator. This is convenient because
the FDS requires significantly more computational time ttaob On the other hand, the FDS
is required for self calibration, and in fact is the cornengt of the calibration method used here.
Unfortunately, a closed-form FDS is not possible becaugbemany solutions that are possible
for any given actuator configuration.

The standard solution when the forward kinematics can nebbesd analytically is to apply an
iterative approach using the IDS [16]. This solution starith an approximate end effector pose
and computes the required joint coordinates. The solusamproved at each iteration by taking
a step defined by the inverse of the Jacobian nfatfikis, of course, requires the Jacobian matrix
to be invertible which is impossible at singular configuras.

4In this case, it is assumed that the Jacobian is square whitle icase for the 3FS whose Jacobian is3ax 3
matrix.




As will be discussed in detail in Sections 3 and 4, the calibnamethods proposed in [11]
requires the manipulator to transit singularities. Themef methods such as the one presented
in [16] can not be used to obtain the FDS. Fortunately, a fagdtedficient solution of the forward
displacement problem for the 3RS, which does not require the Jacobian matrix to be inverted
was presented by Tsedial. in [14].

Given the displacement of the prismatic joints, the positd the revolute jointsB; will be
known; and can be written as follows:

dic,, dacacy, d3cgCyy,
b, = 0 i by = | dasacy, |3 bg= | dssgcy, (2)
dls’h d25'¥2 d38’y3

whered; is the distance from the origid) to the revolute joint (see Figure 2), including the offset
do;; andc, = cos(x) ands, = sin(x).

If the directions;, of the leg linksl; can be found, then, the position of the corresponding
spherical jointA; can also be found. Further, the pose of the end effector iplsito obtain
once the position of the three spherical joints is known. réfuge, the FDS can be reduced to
determining the angle between leg link and & plane, defined as angle.

The unit vectors of the leg links can be expressed in terms a$:

—C) —C\,Cq —C\3Cp
L =1 0 s h=Dh | —cnsa |5 l3=10 | —cxsp (3)
Sy SXa SX3

wherel; = I;s;,.

Adding equation (3) to equation (2) defines the position$iefdpherical joints with respect to
the inertial framg O}. Thatis,a; = b;+1;s;,. The spherical joints’ positions can also be described
with respect to the end effector fran®’}, in which case their position remains constant, and is:

Tp T'pCa TpCa
! ! . !
ay=| 0 |; ay=1| 154 |; a3= | 7psg (4)
0 0 0

As demonstrated by Tsaf al. [14] the distance between any two spherical joints is consta
regardless of which frame of reference they are seen froretefbre, the distance between spher-
ical joints 1 and 2 can be written with respect to frafii¢} and frame{O’}, and the expressions
equated. The procedure is repeated for each joint combimatid yields the following three equa-
tions:

la; — ay|* = |a] — ah|? (5)
|a;, — ay|* = |aj — aj|? (6)
lag — ay|* = |aj — af|? (7)

Equations (5) to (7) are a system of 3 simultaneous equaitioBsinknowns. In [14], Tsadét
al. showed that these equations could be solved using Bezdutisation method; it was also
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Figure 3: Approximation of\; by assuming end effector horizontal.

demonstrated that it yields 64 solutions. Elimination deasible, or mechanically impossible
solutions is time consuming. Tsei al. suggested an optimization technique to minimize an
objective function subject to boundary and behaviour gaisis to compel the desired solution.

The objective function to be minimized is formed by summingations (5) to (7). Gathering
all terms to one side yields:

(dycy, — licn, — dacocy, + lycxyCa)? + (—da5aCy, + laCxy50)?
(d18y, + 118y, — dasy, — l25>\2)2 — (rp — Tpca)z - (Tpsa)z
(dacaCyy — lacr,Co — dscpcyy + I3casCs)” + (d2SaCyy — 12CrySa — d3S3Cy,

I3¢3553)° + (d28qy + 1Sy, — d35yy — l353,)7 — (rpca — 1pC3)” — (FpSa — TS5)°

+ o+ o+ 4

(d3CﬁC’YB - l3c>\365 - dlc’Yl + llc}\l)Q + (d3SﬁC’Y3 - l36>\385)2
+ (d3sy, + 1350 — disy, — l15>\1)2 — (rpcp — Tp)2 - (Tp56)2 =0 (8)

Although the objective function has many terms, it is notreweomplicated, and an algebraic
expression for the gradient as well as the Hessian can beederAnalytical solutions for both
of these gradient matrices greatly increases the compuotdtefficiency [17] of the optimization
algorithms used to determine the values\pfori = 1, 2, 3.

Unlike Tsaiet al., behaviour constraints are not used. They were consideu¢dnplementing
a constrained optimization algorithm would have requingdificantly more computational time.
Instead, it was found that by using a good approximation efgblution as a starting point, the
basic Newton Search method performed very well.

It is possible to approximatg; by examining the geometry of the manipulator (see Figure 3).
All dimensions shown are known except the anigl@nd the inclination of the end effector plat-
form. If the end effector is assumed to be exactly horizoit@n\; can be approximated by:

dicy; —
A; = arccos (#) (9)
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Figure 4: Example of a direct kinematic singularity of th€RS.

Using this approximation as a starting point, the Newtormr&emethod converged very quickly
(almost always in less than 20 iterations). Once each anggeknown, the position of the spherical
joints can be found using equations (2) and (3). The endteff@ose can be readily derived from
the position of the spherical joints. The results of thisgedure were checked by using the IDS
to verify that the end effector pose returned correspondebd original actuator positions. The
results were found to be accurate to withixx 10~ units.

3 SELF CALIBRATION WITHOUT ADDITIONAL SENSORS

As mentioned in the introduction, the self calibration gy used here was developed by Last
et al. [11], and allows calibration without the use of any exteraaladditional sensors. This
is accomplished by specific knowledge about the manipulatquestion when it enters a direct
kinematic singularity. When this occurs, all actuatorsi@mnain locked and the end effector is still
capable of small movements. The positions of the actuatora fjiven singular configuration are
very precise. By comparing their displacement as prediotetihe kinematic model to measured
values from the physical model, redundant information isioted.

Because the self calibration strategy uses singular caafigns to obtain the redundancy re-
quired for calibration, this strategy can not be appliedltonanipulators. That is, not all parallel
manipulators have direct kinematic singularities withie reachable workspace, and serial ma-
nipulators do not exhibit this type of singularity at all. rmately the 3-RS has three distinct
singularities of this type within its workspace (one for ledcanch). Specifically, the type of sin-
gularity that is being exploited here occurs when the linthandirections;, and passing through
B; intersects the line passing through the centre of the sigoints A; on the other two branches
(see Figure 4).

To pass through the singularity, two of the actuators arkdddn the same position while the
third one is released. Application of an external force \{#jyaf oriented as depicted in Figures 1
and 4) causes the end effector to pivot downwards. As thipdrapthe released joint will extend
until the singularity is achieved, at which time, it will st&o retract. By monitoring the actuator
position for this joint, the time at which the velocity is pecorresponds exactly to the exact
moment that the manipulator passes the singular pose.




A reading of the position of the extended prismatic joifp,qsu-q, 1S taken from the singular
configuration. Using the positions of the fixed actuatorsngmii the singular configuration is
imitated using the kinematic model. From this theoretioadslar pose, a corresponding reading,
Qrneoretical, 1S taken, wherek represents a vector of kinematic parameters for the moaal ts
generate the singular pose. The theoretical reading is amdpvith the measured value to form a
residual,

T(k) = (measured — cheoretical(k) (10)

The process is repeated at various singular configuratiBash residual is added to a vector
and an optimization algorithm is used to find the kinemati@apeetersk that result in the sum of
least squares.

4 |MPLEMENTATION

Self calibration without redundant sensors is an exercisgptimization several layers deep, spe-
cially as applied to the 3fS manipulator. At each iteration, a new set of kinematiapeaters is
tested, which requires that the theoretical singular candijons be recalculated, to obtain a new
residual vector. Every singular pose that must be identiBedires a bisection search; every iter-
ation of which requires a solution of the forward displacaetq@oblem. This process is outlined
in Figure 5, and each stage of the process is described irthiess that follow.

4.1 Optimization of Kinematic Parameters

The primary goal of the self calibration algorithm is to detge a set of kinematic parameters that
best represents the physical mechanism being calibratdio8 3 described a method by which
to measure how closely the valueskomimic that mechanism, allowing a numerical search to be
performed.

The Levenberg-Marquardt (LM) algorithm is a local searathteque for obtaining the sum
of least squares of non-linear functions [18]. This is elyaitte type of problem presented here.
Lourakis [18] wrote a self-contained implementation of thé algorithm in C which he titled
| evmar ; the code for this package is freely available online.

To use thd evmar function, requires a measurement vector, which corresptmdhe pris-
matic joint positions for the measured singular configorati At each iteration of the algorithm,
the function tests a new, which requires an estimated measurement vector. Thimatstin is a
recalculation of the theoretical prismatic joint posisdior the predicted singular configurations,
and represents the objective function that the algorithes is guide its search. Algorithm termi-
nation occurs when either: the gradient of the sum of leasdrss, the relative change in step size
or the sum of least squares drop below their respectivelibles; or, if a maximum number of
iterations has been reached.

4.2 Calculation of Actuator Positions

The residual vector, as defined in Section 3, is calculatethéy M algorithm internally. All that
is required for this calculation is an update @f....:;.ca; Values for each singular configuration
that was tested,e., at least one new,....icat TOr €ach parameter being calibrated. The current
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model has 12 distinct parameters being calibrated, with @2sured singular configurations, each
reqUiring a NeWtheoretical -

It may seem trivial that these calculations need to be peddrfor each measurement. Consider
however, that the model may be extended to include as many gmr2ameters, theevnar
function only requires approximately 30 iterations, anel tbrward kinematics can require up to
20 iterations. Clearly, repetition for each parameter adslgnificant level of iteration in the nested
structure of the algorithm.

4.3 Detection of Singular Configurations

Eachgucoreticar that must be calculated requires a new theoretical singulafiguration. Iden-
tifying a singular configuration is not trivial and indeedjoires several iterations of the FDS.
However, there are limits to possible values;@f, ...« as it is impossible for the prismatic joint
to extend beyond the reach of the leg link. Thus, the maximalweforq,coreticar 1S:

Tp -+ ll
cos(7i)

mazx _
Gtheoretical =

(11)

wherei is the branch index. The lower limig7" .. . is taken as the position of the two fixed
prismatic joints, the average is used if they are differBetcause only one prismatic jointis driven
while the other two are held fixed in the same position, thgudarity can only occur once the
driven joint is extend beyond the position of the fixed ones.

With clear limits for ¢,.oreticat, @ bisection search is performed to obtain its precise value
Recall equation (8) from the forward kinematics, the FDSksde minimize the left hand side of
this equation. If the solution is not feasible, then the itesil be greater than zero. Such is the
case when the driven prismatic joint is extended beyond ¢ivé pf the singular configuration. If
the prismatic joint is within the singular point then thet leénd side of equation (8) will equal zero
(or as near as machine precision will allow). The bisectieawrsh continues until the upper and
lower limit are within a set tolerance of one another. Ond¢g¢bndition is met, the average value
between upper and lower limits is usedjas.:ica- AS the search begins to converge, the solution
of the previous iteration makes a better starting point fier EDS than the approximation made
in equation 9. To gauge when this occurs, a second (muchr)aaderance level is set, and once
the distance between upper and lower limits is within thisose tolerance the previous solution
to the FDS is used as the starting point for the next step. @sdtris a significant decrease in the
number of Newton Search steps required to solve the FDS.

5 RESULTS

A computer simulation was run to verify that both the methad &he implementation worked
correctly. A list of feasible singular configurations wasigeated using the method described in
Section 4.3, using non-nominal kinematic parameters, aodrded in joint space. From this list,
a vector ofg,,..sureq Values was formed, and used as the measured vector for thdddvitam.
The program was then run with nominal values for the stapg@gmeterk.

The program ran successfully and only required approxima&@ iterations of thd evnar
algorithm to complete. The results always matched the katenparameters used to generate
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the test data exactly. Although this is only a simulatiord an consideration has been made for
any type of noise, the results are extremely encouragingceasful extrapolation of the model
parameters validates the work that has been completedahus f

6 CONCLUSIONS

A calibration strategy that requires no redundant sensassimplemented to calibrate the R8
parallel manipulator. The mechanism was described, anteadxplanation of the inverse kine-
matics provided. A derivation of the forward displacemesitiBon was presented which consti-
tutes the crux of the calibration strategy. The self catibrastrategy was explained and a descrip-
tion of implementation procedure given. Because all measants are taken in joint space, the
FDS is vital to obtain corresponding theoretical singutanf@urations.

A simulation of the calibration procedure was conducteddldate the method and test the
realisation. Kinematic parameters can be obtained thattlgxaatch those used to generate the
test data. Although the work is only preliminary, it was segsful and is an excellent first step for
an accurate yet simple calibration procedure that can bkedpp the 3-FRS and integrated into
the controller. It is interesting to observe, that the IDSwat required at any stage during the
calibration process. The whole process is completed usitygtbe FDS.

Remaining work includes development of an extended kinemabdel of the 3-RS to better
model the geometrical discrepancies resulting from mantufang. Also, physical experiments
need to be performed to measure the effectiveness of theatatin strategy. To this end, a proto-
type of the 3-RRS is currently being constructed at the Unviersity of Newr&wick.
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