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In this paper a new calibration strategy that does not require any sensors beyond those used to
control actuators is applied to the 3-PRS parallel manipulator. Parallel manipulators have several
advantages over their serial counterparts, but have seen limited use because of low accuracy, among
other reasons. Calibration allows the kinematic model thatis used to control the manipulator to be
adjusted to more closely replicate the physical manipulator. The architecture and kinematics of the
3-PRS are presented, as well an explanation of this new calibration strategy. The strategy makes
use of direct kinematic singularities to obtain the redundant information required for calibration.
Implementation of the algorithm is accomplished via a nested series of optimization problems, each
one accomplishing a simpler stage of the overall procedure.A simulated calibration is performed,
and the algorithm successfully returns the exact values used to generate the test data.
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AUTO-CALIBRATION DU MANIPULATEUR 3-P RS SANS SANSEURS REDONDANTS

Dans cet article, une nouvelle stratégie de calibrage qui n’a pas besoin d’aucun senseur autre de
ceux employés pour commander les actioneurs est appliquée au manipulateur parallèle 3-PRS.
Les manipulateurs parallèles ont plusieurs avantages parrapport aux manipulateurs en série, mais
leur utilisation est limitée à cause de leur basse exactitude, entre autres raisons. Le calibrage
permet ajuster les paramètres cinématiques pour qu’ils reflètent plus exactement le manipulateur
réel. L’architecture et la cinématique du 3-PRS sont présentées, aussi bien qu’une explication de
cette nouvelle stratégie de calibrage. La stratégie utilises les singularités cinématiques directes
pour obtenir l’information redondante nécessaire pour lecalibrage. L’exécution de l’algorithme
est accomplie grâce à la solution de plusieurs problèmesd’optimisation, chacune accomplissant
une étape plus simple du problème global. Un calibrage simulé est utilisé pour démontrer que
l’algorithme renvoie avec succès les valeurs exactes employées pour produire des essais.

Mots clés: Manipulateurs parallèle, calibration, calibration à base de singularités.
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1 INTRODUCTION

It has been shown that, in general, kinematic manipulators (both serial and parallel) have better
repeatability than absolute accuracy [1]. A position recorded in joint space can be reproduced
within very small tolerances; whereas seeking arbitrary positions in task space results in significant,
and often the case, unacceptable errors.

Errors such as these are caused by discrepancies between thetheoretical kinematic model and
the real world implementation of the manipulator. The kinematic model is the set of mathematical
equations that are used to translate task space coordinatesinto joint space coordinates and vice
versa. Because manipulators can only be controlled by changing the position of their actuators,
they can only be controlled in joint space. When a discrepancy exists between the theoretical
model and an actual physical model, inaccuracies should naturally be expected.

Minimizing these kind of discrepancies is the goal of all calibration procedures. Much work has
been done in the field of manipulator calibration for both serial [2] and parallel [3, 4, 5] manipula-
tors. In both cases, four separate tasks are generally required to calibrate a specific manipulator, as
defined by [6]: (1) modelling, (2) measurement, (3) identification and (4) correction.

Provided a suitable kinematic model is available, the parameters of the model must be identified
to perform calibration of the physical manipulator. This can be done in a variety of ways [7, 8,
9, 10]; but in all cases the measured coordinates (either in joint or task space) are compared to
theoretical ones. Kinematic parameters can then be corrected to force the theoretical predictions
to conform to the measured values.

Lastet al. [11] proposed a new calibration strategy that allows parallel manipulators to be cal-
ibrated without any external sensor and without any additional joint sensors. Measured and theo-
retical joint space coordinates are obtained for direct kinematic singular configurations. Using the
disparity between these singular poses yields a residual between coordinates. The residual can be
minimized through the use of optimization strategies. The parameters of this problem are the kine-
matic parameters of the mechanism, and, once optimized, they will reflect the physical geometry
of the manipulator.

The focus of this paper is to adapt Lastet al.’s calibration method to the 3-PRS parallel ma-
nipulator proposed in [12]. A fixtureless calibration strategy using a motion capture system was
developed for this manipulator in [13]. Although the methodwas shown to be effective to calibrate
a number of kinematic parameters, the experiments on the available motion capture system had
much lower quality than expected. The self calibration method used here removes the need for any
external sensors and allows calibration to be performed in situ as often as necessary. Unfortunately,
this method does require a forward displacement solution, which has no closed-form solution for
the 3-PRS [14]. This is a minor drawback, the result of which is a longer computing time during
calibration.

What follows is divided into five sections. First, the kinematics that govern the 3-PRS manipu-
lator are described; for both the inverse and forward displacement solutions. Next, a more detailed
explanation of the self calibration algorithm and a brief discussion of its limitations are presented.
Third is a thorough treatment of the application of the algorithm to the 3-PRS, along with a validat-
ing computer simulation. The final two sections discuss the results and provide some concluding
remarks.
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Figure 1: The 3-PRS parallel manipulator.
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Figure 2: Vector model of the 3-PRS.

2 K INEMATICS OF THE 3-PRS

The 3-PRS parallel manipulator is a three degree of freedom (3-DOF)spatial manipulator. The
end effector is a mobile platform that is connected to a base by three serial branches with identical
kinematic architecture. Each branch, from base to end effector, consists of an active prismatic joint
(P), a passive revolute joint (R), and a passive spherical joint (S). An example of the manipulator
is shown in Figure 1.

Also shown in Figure 1 are the architectural parameters thataffect the kinematics of the ma-
nipulator. These are the quantities being sought after by the calibration process. Angles between
the prismatic joints are defined byα andβ; the radius of the end effector platform isrp and is
defined as the radius of the circle that contains the centre ofall three spherical joints. Leg length,
li, is defined as the shortest distance from the revolute joint axis to the centre of the spherical joint,
and, due to manufacturing inaccuracies, may be unique for each branch. The inclination of the
prismatic joints of branchi is defined by angleγi and is measured between the line of action of
the joint and the plane defined as the manipulator’s base. Notshown in the figure are the prismatic
joint offsets,d0i; these values represent the displacement of the prismatic joint at the encoder’s
zero position. Although these offsets do not affect the kinematics of the manipulator, they will be
required to operate the physical mechanism. As will be seen later, it is often convenient to express
the kinematic parameters as a vector:

k = [α, β, rp, l1, l2, l3, γ1, γ2, γ3, d01, d02, d03]
T (1)

It will be the purpose of the calibration process to obtain all these quantities.

2.1 Inverse Displacement Solution

The kinematics of the 3-PRS were first analysed by Carreteroet al. [12], a revised set were de-
veloped by Pond and Carretero for their work on [15] which incorporated the inclination of the
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prismatic joints (i.e., γ). In both papers, an inertial frame is defined with theXY plane parallel
to the base platform, and theX axis aligned with the projection of the prismatic joint of branch
1, onto theXY plane. It should be noted that the kinematic models in [12] and [15], as well as
most other robot kinematic models, are theoretical works that do not take into account inaccuracies
such as joint offset or misalignment. For instance, the equations derived in [15] assume that all the
prismatic joints intersect at a common point, the origin of the base frame. Furthermore, the rev-
olute joints are assumed to be perfectly perpendicular to the line of action of the prismatic joints,
as well as parallel to the base. Under these assumptions, each spherical joint is constrained to lie
on a plane perpendicular to the base plane, and parallel to the prismatic joint of the corresponding
branch.

Restraining the motion of the spherical joints greatly simplifies the constraint equations that
relate the dependent and independent task space variables.Because the 3-PRS is a spatial manipu-
lator, the task space is composed of six variables (e.g., x, y, z, ψ, φ, θ). However, the manipulator
has only 3-DOF, requiring that only three variables be chosen as independent. These parameters
are all that is required to completely define the end effectorpose (position and orientation). Choice
of the independent variables is arbitrary, and should be chosen based on the task at hand; Carretero
et al. [12] used elevation of the platform (displacement along theinertialZ axis), and two rotations
of the end effector about the inertial frame (anglesψ andθ about the inertialX andY axes, re-
spectively). Based on the constraints placed on the spherical joints’ motion, it is possible to derive
a set of constraint equations which yield the three dependent variables (x, y, φ) as a function of the
independent variables (z, ψ, θ).

Once the end effector pose has been completely described, itis straightforward to determine
the required actuator positions necessary to attain the described pose [12]. Each actuator will have
two solutions but one can be eliminated by inspecting the geometry of the mechanism. Obtain-
ing the actuator positions from the specified task space variables constitutes the complete inverse
displacement solution (IDS).

2.2 Forward Displacement Solution

The IDS focuses on obtaining actuator positions from task variables. It follows naturally that the
forward displacement solution (FDS) provides end effectorpose given actuator positions. The FDS
is not strictly necessary for position control of the 3-PRS manipulator. This is convenient because
the FDS requires significantly more computational time to obtain. On the other hand, the FDS
is required for self calibration, and in fact is the cornerstone of the calibration method used here.
Unfortunately, a closed-form FDS is not possible because ofthe many solutions that are possible
for any given actuator configuration.

The standard solution when the forward kinematics can not besolved analytically is to apply an
iterative approach using the IDS [16]. This solution startswith an approximate end effector pose
and computes the required joint coordinates. The solution is improved at each iteration by taking
a step defined by the inverse of the Jacobian matrix4. This, of course, requires the Jacobian matrix
to be invertible which is impossible at singular configurations.

4In this case, it is assumed that the Jacobian is square which is the case for the 3-PRS whose Jacobian is a3 × 3

matrix.
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As will be discussed in detail in Sections 3 and 4, the calibration methods proposed in [11]
requires the manipulator to transit singularities. Therefore, methods such as the one presented
in [16] can not be used to obtain the FDS. Fortunately, a fast and efficient solution of the forward
displacement problem for the 3-PRS, which does not require the Jacobian matrix to be inverted,
was presented by Tsaiet al. in [14].

Given the displacement of the prismatic joints, the position of the revolute jointsBi will be
known; and can be written as follows:

b1 =





d1cγ1

0
d1sγ1



 ; b2 =





d2cαcγ2

d2sαcγ2

d2sγ2



 ; b3 =





d3cβcγ3

d3sβcγ3

d3sγ3



 (2)

wheredi is the distance from the origin,O to the revolute joint (see Figure 2), including the offset
d0i; andc∗ = cos(∗) ands∗ = sin(∗).

If the directionsli of the leg linksli can be found, then, the position of the corresponding
spherical jointAi can also be found. Further, the pose of the end effector is simple to obtain
once the position of the three spherical joints is known. Therefore, the FDS can be reduced to
determining the angle between leg link and theXY plane, defined as angleλi.

The unit vectors of the leg links can be expressed in terms ofλi as:

l1 = l1





−cλ1

0
sλ1



 ; l2 = l2





−cλ2
cα

−cλ2
sα

sλ2



 ; l3 = l3





−cλ3
cβ

−cλ3
sβ

sλ3



 (3)

whereli = lisli .
Adding equation (3) to equation (2) defines the positions of the spherical joints with respect to

the inertial frame{O}. That is,ai = bi+lisli. The spherical joints’ positions can also be described
with respect to the end effector frame{O′}, in which case their position remains constant, and is:

a
′

1
=





rp

0
0



 ; a
′

2
=





rpcα
rpsα

0



 ; a
′

3
=





rpcβ
rpsβ

0



 (4)

As demonstrated by Tsaiet al. [14] the distance between any two spherical joints is constant,
regardless of which frame of reference they are seen from. Therefore, the distance between spher-
ical joints 1 and 2 can be written with respect to frame{O} and frame{O′}, and the expressions
equated. The procedure is repeated for each joint combination and yields the following three equa-
tions:

|a1 − a2|
2 = |a′

1
− a

′

2
|2 (5)

|a2 − a3|
2 = |a′

2
− a

′

3
|2 (6)

|a3 − a1|
2 = |a′

3
− a

′

1
|2 (7)

Equations (5) to (7) are a system of 3 simultaneous equationsin 3 unknowns. In [14], Tsaiet
al. showed that these equations could be solved using Bezout’s elimination method; it was also
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Figure 3: Approximation ofλi by assuming end effector horizontal.

demonstrated that it yields 64 solutions. Elimination of infeasible, or mechanically impossible
solutions is time consuming. Tsaiet al. suggested an optimization technique to minimize an
objective function subject to boundary and behaviour constraints to compel the desired solution.

The objective function to be minimized is formed by summing equations (5) to (7). Gathering
all terms to one side yields:

(d1cγ1
− l1cλ1

− d2cαcγ2
+ l2cλ2

cα)2 + (−d2sαcγ2
+ l2cλ2

sα)2

+ (d1sγ1
+ l1sλ1

− d2sγ2
− l2sλ2

)2 − (rp − rpca)
2 − (rpsα)2

+ (d2cαcγ2
− l2cλ2

cα − d3cβcγ3
+ l3cλ3

cβ)2 + (d2sαcγ2
− l2cλ2

sα − d3sβcγ3

+ l3cλ3
sβ)2 + (d2sγ2

+ l2sλ2
− d3sγ3

− l3sλ3
)2 − (rpcα − rpcβ)2 − (rpsα − rpsβ)2

+ (d3cβcγ3
− l3cλ3

cβ − d1cγ1
+ l1cλ1

)2 + (d3sβcγ3
− l3cλ3

sβ)2

+ (d3sγ3
+ l3sλ3

− d1sγ1
− l1sλ1)

2 − (rpcβ − rp)
2 − (rpsβ)2 = 0 (8)

Although the objective function has many terms, it is not overly complicated, and an algebraic
expression for the gradient as well as the Hessian can be derived. Analytical solutions for both
of these gradient matrices greatly increases the computational efficiency [17] of the optimization
algorithms used to determine the values ofλi for i = 1, 2, 3.

Unlike Tsaiet al., behaviour constraints are not used. They were considered,but implementing
a constrained optimization algorithm would have required significantly more computational time.
Instead, it was found that by using a good approximation of the solution as a starting point, the
basic Newton Search method performed very well.

It is possible to approximateλi by examining the geometry of the manipulator (see Figure 3).
All dimensions shown are known except the angleλi and the inclination of the end effector plat-
form. If the end effector is assumed to be exactly horizontal, thenλi can be approximated by:

λi = arccos

(

dicγi − rp

li

)

(9)
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Figure 4: Example of a direct kinematic singularity of the 3-PRS.

Using this approximation as a starting point, the Newton Search method converged very quickly
(almost always in less than 20 iterations). Once each angleλi is known, the position of the spherical
joints can be found using equations (2) and (3). The end effector pose can be readily derived from
the position of the spherical joints. The results of this procedure were checked by using the IDS
to verify that the end effector pose returned corresponded to the original actuator positions. The
results were found to be accurate to within1 × 10−9 units.

3 SELF CALIBRATION WITHOUT ADDITIONAL SENSORS

As mentioned in the introduction, the self calibration strategy used here was developed by Last
et al. [11], and allows calibration without the use of any externalor additional sensors. This
is accomplished by specific knowledge about the manipulatorin question when it enters a direct
kinematic singularity. When this occurs, all actuators canremain locked and the end effector is still
capable of small movements. The positions of the actuators for a given singular configuration are
very precise. By comparing their displacement as predictedby the kinematic model to measured
values from the physical model, redundant information is obtained.

Because the self calibration strategy uses singular configurations to obtain the redundancy re-
quired for calibration, this strategy can not be applied to all manipulators. That is, not all parallel
manipulators have direct kinematic singularities within the reachable workspace, and serial ma-
nipulators do not exhibit this type of singularity at all. Fortunately the 3-PRS has three distinct
singularities of this type within its workspace (one for each branch). Specifically, the type of sin-
gularity that is being exploited here occurs when the line inthe directionsli and passing through
Bi intersects the line passing through the centre of the spherical jointsAi on the other two branches
(see Figure 4).

To pass through the singularity, two of the actuators are locked in the same position while the
third one is released. Application of an external force (gravity if oriented as depicted in Figures 1
and 4) causes the end effector to pivot downwards. As this happens the released joint will extend
until the singularity is achieved, at which time, it will start to retract. By monitoring the actuator
position for this joint, the time at which the velocity is zero corresponds exactly to the exact
moment that the manipulator passes the singular pose.
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A reading of the position of the extended prismatic joint,qmeasured, is taken from the singular
configuration. Using the positions of the fixed actuators as input the singular configuration is
imitated using the kinematic model. From this theoretical singular pose, a corresponding reading,
qtheoretical, is taken, wherek represents a vector of kinematic parameters for the model used to
generate the singular pose. The theoretical reading is compared with the measured value to form a
residual,

r(k) = qmeasured − qtheoretical(k) (10)

The process is repeated at various singular configurations.Each residual is added to a vector
and an optimization algorithm is used to find the kinematic parametersk that result in the sum of
least squares.

4 IMPLEMENTATION

Self calibration without redundant sensors is an exercise in optimization several layers deep, spe-
cially as applied to the 3-PRS manipulator. At each iteration, a new set of kinematic parameters is
tested, which requires that the theoretical singular configurations be recalculated, to obtain a new
residual vector. Every singular pose that must be identifiedrequires a bisection search; every iter-
ation of which requires a solution of the forward displacement problem. This process is outlined
in Figure 5, and each stage of the process is described in the sections that follow.

4.1 Optimization of Kinematic Parameters

The primary goal of the self calibration algorithm is to determine a set of kinematic parameters that
best represents the physical mechanism being calibrated. Section 3 described a method by which
to measure how closely the values ofk mimic that mechanism, allowing a numerical search to be
performed.

The Levenberg-Marquardt (LM) algorithm is a local search technique for obtaining the sum
of least squares of non-linear functions [18]. This is exactly the type of problem presented here.
Lourakis [18] wrote a self-contained implementation of theLM algorithm in C which he titled
levmar; the code for this package is freely available online.

To use thelevmar function, requires a measurement vector, which corresponds to the pris-
matic joint positions for the measured singular configurations. At each iteration of the algorithm,
the function tests a newk, which requires an estimated measurement vector. This estimation is a
recalculation of the theoretical prismatic joint positions for the predicted singular configurations,
and represents the objective function that the algorithm uses to guide its search. Algorithm termi-
nation occurs when either: the gradient of the sum of least squares, the relative change in step size
or the sum of least squares drop below their respective thresholds; or, if a maximum number of
iterations has been reached.

4.2 Calculation of Actuator Positions

The residual vector, as defined in Section 3, is calculated bythe LM algorithm internally. All that
is required for this calculation is an update ofqtheoretical values for each singular configuration
that was tested,i.e., at least one newqtheoretical for each parameter being calibrated. The current
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Figure 5: Flow chart of the self calibration algorithm.
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model has 12 distinct parameters being calibrated, with 12 measured singular configurations, each
requiring a newqtheoretical.

It may seem trivial that these calculations need to be performed for each measurement. Consider
however, that the model may be extended to include as many as 22 parameters, thelevmar
function only requires approximately 30 iterations, and the forward kinematics can require up to
20 iterations. Clearly, repetition for each parameter addsa significant level of iteration in the nested
structure of the algorithm.

4.3 Detection of Singular Configurations

Eachqtheoretical that must be calculated requires a new theoretical singularconfiguration. Iden-
tifying a singular configuration is not trivial and indeed requires several iterations of the FDS.
However, there are limits to possible values ofqtheoretical as it is impossible for the prismatic joint
to extend beyond the reach of the leg link. Thus, the maximum value forqtheoretical is:

qmax
theoretical =

rp + li

cos(γi)
(11)

wherei is the branch index. The lower limit,qmin
theoretical, is taken as the position of the two fixed

prismatic joints, the average is used if they are different.Because only one prismatic joint is driven
while the other two are held fixed in the same position, the singularity can only occur once the
driven joint is extend beyond the position of the fixed ones.

With clear limits for qtheoretical, a bisection search is performed to obtain its precise value.
Recall equation (8) from the forward kinematics, the FDS seeks to minimize the left hand side of
this equation. If the solution is not feasible, then the result will be greater than zero. Such is the
case when the driven prismatic joint is extended beyond the point of the singular configuration. If
the prismatic joint is within the singular point then the left hand side of equation (8) will equal zero
(or as near as machine precision will allow). The bisection search continues until the upper and
lower limit are within a set tolerance of one another. Once this condition is met, the average value
between upper and lower limits is used asqtheoretical. As the search begins to converge, the solution
of the previous iteration makes a better starting point for the FDS than the approximation made
in equation 9. To gauge when this occurs, a second (much larger) tolerance level is set, and once
the distance between upper and lower limits is within this second tolerance the previous solution
to the FDS is used as the starting point for the next step. The result is a significant decrease in the
number of Newton Search steps required to solve the FDS.

5 RESULTS

A computer simulation was run to verify that both the method and the implementation worked
correctly. A list of feasible singular configurations was generated using the method described in
Section 4.3, using non-nominal kinematic parameters, and recorded in joint space. From this list,
a vector ofqmeasured values was formed, and used as the measured vector for the LM algorithm.
The program was then run with nominal values for the startingparametersk.

The program ran successfully and only required approximately 30 iterations of thelevmar
algorithm to complete. The results always matched the kinematic parameters used to generate
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the test data exactly. Although this is only a simulation, and no consideration has been made for
any type of noise, the results are extremely encouraging. Successful extrapolation of the model
parameters validates the work that has been completed thus far.

6 CONCLUSIONS

A calibration strategy that requires no redundant sensors was implemented to calibrate the 3-PRS
parallel manipulator. The mechanism was described, and a brief explanation of the inverse kine-
matics provided. A derivation of the forward displacement solution was presented which consti-
tutes the crux of the calibration strategy. The self calibration strategy was explained and a descrip-
tion of implementation procedure given. Because all measurements are taken in joint space, the
FDS is vital to obtain corresponding theoretical singular configurations.

A simulation of the calibration procedure was conducted to validate the method and test the
realisation. Kinematic parameters can be obtained that exactly match those used to generate the
test data. Although the work is only preliminary, it was successful and is an excellent first step for
an accurate yet simple calibration procedure that can be applied to the 3-PRS and integrated into
the controller. It is interesting to observe, that the IDS was not required at any stage during the
calibration process. The whole process is completed using only the FDS.

Remaining work includes development of an extended kinematic model of the 3-PRS to better
model the geometrical discrepancies resulting from manufacturing. Also, physical experiments
need to be performed to measure the effectiveness of the calibration strategy. To this end, a proto-
type of the 3-PRS is currently being constructed at the Unviersity of New Brunswick.
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