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ABSTRACT

The force-moment capabilities of revolute-jointed planar parallel manipulators (PPMs) is presented.
A previously developed analysis that determines explicitly the force-moment capabilities of parallel
manipulators is considered and the formulation is improved. This analysis is based upon properly
adjusting the actuator outputs to their maximum capabilities. The force-moment capabilities of two
actuation layouts are investigated: the non-redundant 3-RRR PPM and the redundantly actuated
4-RRR PPM, where the underline indicates the actuated joint. Four studies of force-moment
capabilities are presented: maximum force with a prescribed moment, maximum applicable force,
maximum moment with a prescribed force, and maximum applicable moment. These studies are
performed for constant payload orientation of the mobile platform throughout the manipulator’s
workspace. It is concluded that the manipulator with the additional actuated branch shows an
improvement of the force-moment capabilities at the expense of reducing its workspace.

Capacités de Force et Moment des Manipulateurs Parallèles Plans
avec Articulations Rotoïdes et Chaînes Actionnées Additionnelles

RÉSUMÉ

Les capacités de force et moment des manipulateurs parallèles plans (MPPs) avec articulations
rotoïdes sont présentés. Une analyse développée précédemment qui détermine explicitement les
capacités de force et moment des manipulateurs parallèles est considérée et sa formulation est
améliorée. Cette analyse est basée sur l’ajustement correct des torques des actioneurs au maximum
de ses capacités. Les capacités de force et moment de deux dispositions d’actionnement sont
étudiées: le MPP non redondant 3-RRR et le MMP avec actionnement redondant 4-RRR, où la
lettre soulignée indique le joint actionné. Quatre études des capacités de force et moment sont
présentées: force maximale avec un moment prescrit, force maximale applicable, moment maximal
avec une force prescrite, et moment maximal applicable. Ces études sont réalisées avec une
orientation constante de la plate-forme mobile dans tout l’espace de travail du manipulateur. En
conclusion, le manipulateur avec la chaîne actionnée additionnelle montre une amélioration des
capacités de force et moment au prix d’une réduction de son espace de travail.
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1 INTRODUCTION

1.1 Force Capabilities

This paper investigates the force-moment capabilities of planar parallel manipulators (PPMs) with
revolute joints and how the inclusion of an additional actuated branch affects its performance. The
mobile platform of PPMs is subject to the interaction of forces (fy and fx) along the plane and
a moment (mz) about the normal to the plane. For a specific moment mz, the force capability
of a PPM is defined as the maximum force that can be applied (or sustained) in any direction in
the plane, mz = const. The force capability of a manipulator depends on its design, posture,
and actuator capabilities. Consider the 3-RRR PPM described in the Appendix. Let the mobile
platform be located at the centre of the workspace and the branches have the configuration shown
in Figure 1a. The maximum output torque of the actuated joints is τ imax = ±4.2 Nm, for i = 1, 2, 3.
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Figure 1: Generation of a Force Capability Polygon.

Force capabilities can be illustrated with force polygons. A force polygon shows the maximum
forces that can be applied or sustained by the end-effector in any direction. Let α be any direction
of the force, i.e., 0 � α � 2π. The hexagon shown in Figure 1a illustrates the force polygon of
the described manipulator at mz = 0. Force polygons may show elements of symmetry because
the actuators provide the same torque output clockwise and counterclockwise, i.e., ±τ imax . To
generate a force polygon, consider the angle α shown in Figure 1b. The magnitude of the force in
this direction (dashed line) is constrained by the actuator torque capabilities. Figure 1b illustrates
the three points (denoted with+) in which the actuators are working at their maximum capabilities.
The closest point to the centre of the force space constrains the force capability of the system because
a greater force would imply that at least one actuator is working over its output capabilities. These
points become lines when α is varied from 0 to 2π. Each actuator constrains the system with two
parallel lines because of the positive and negative capabilities of the actuators (±τ imax). The area
between these parallel lines represents the force that one actuator can sustain in any direction.
The area enclosed by all the lines, a polygon, represents the force capabilities of the system. The
distance from the centre of the force space to any point on the polygon is proportional to the
magnitude of the force. Figure 1b also shows Fmax and Fmin, the maximum and the minimum of
the maximum applicable forces for all directions, respectively. These two magnitudes will be used
to describe a force polygon.

The force-moment capability analysis is essential in the design and development of parallel
manipulators. For a given application, the end-effector is subject to the interaction of forces and
moments. Knowledge of the maximum forces and moments that the manipulator can apply or
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sustain is a necessary tool for an optimum design. By being able to graphically visualize the
force-moment capabilities, comparisons between different design parameters, such as the actuator
output and the dimensions of the links, can be explored.

Early works on force capabilities dealt with the problem of force distribution of two serial manip-
ulators handling a common payload. Zheng and Luh [1] developed an algorithm that incorporates
maximum torque output capabilities. Two analyses were presented. The first analysis ensured
that the forces applied by the branches were in the same direction as the required force. The sec-
ond analysis ensured that the load was evenly distributed between the two serial arms. Tao and
Luh [2] considered minimizing the square of the joint torques of two joint-redundant cooperating
manipulators.

Kumar andWaldron [3] investigated force distribution in redundantly-actuated closed-loop kine-
matic chains and concluded that there would be zero internal force with the Moore-Penrose solution.
Buttolo and Hannaford [4] analyzed the force capabilities of a redundant PPM. Torques were opti-
mized using the∞-norm resulting in higher force capabilities when compared to the pseudo-inverse
solution. Nokleby et al. [5] developed a methodology to optimize the force capabilities of both non-
redundantly and redundantly-actuated PPMs using a high norm and a scaling factor. Zibil et al.
[6] created an explicit methodology for determining the force-moment capabilities of redundantly
actuated PPMs. Their methodology will be described and implemented in this work.

1.2 Redundancy

Merlet [7] described that the inclusion of redundancy may lead to improvements in various analyses
such as forward kinematics, singular configurations, optimal force control, and calibration. Lee
and Kim [8] defined a redundant parallel manipulator as one that has an infinite number of choices
for either generating motion or resisting external forces. Also, Lee and Kim presented an analysis
of different types of redundancy. Ebrahimi et al. [9] classified redundancy into two categories:
kinematic and actuation redundancy.

Kinematic Redundacy

Amanipulator is termed kinematically redundant when an infinite number of postures of the linkage
lead to the same pose of the end-effector. Thus, there is an infinite number of possible solutions
to the inverse kinematic problem. This is the typical case of redundant serial manipulators.
For parallel manipulators, this redundancy happens when the number of joints of at least one
branch is greater than the number of joints that are required to provide the desired mobility of the
mobile platform. This type of redundancy allows self-motion of the redundantly-jointed branch(es)
improving the dexterity and workspace of the manipulator. Also, kinematic redundancy can be
implemented to reduce or even eliminate force-unconstrained (singular) configurations. Wang and
Gosselin [10] added an extra revolute joint to one branch of the 3-RPR PPM yielding a RRPR-
2RPR layout. The conditions that make this manipulator force unconstrained were identified and
the singularity loci were reduced. Ebrahimi et al. [9] proposed a 3-PRRR layout, a manipulator
which contains joint redundancy in every branch. By properly manipulating the two actuated
joints of each branch, this manipulator can provide singularity free paths and obstacle avoidance.
A draw back of this type of redundancy is the increase of mass and/or inertia due to the addition of
actuators on mobile links. Despite the redundancy, there is only one vector force per branch acting
on the mobile platform. Thus, the load capability cannot be optimized, but as an alternative, the
direction of the branch forces can be optimized by changing the posture of the redundantly-jointed
branch(es). With this type of redundancy, each actuator is manipulated independently and there
are no internal forces that could damage the device.
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Actuation Redundacy

A parallel manipulator is termed redundantly actuated when an infinite number of resultant force
combinations can span the system of external forces. Thus, there is an infinite number of solutions
to the forward static force problem. The implementation of this redundancy requires a reliable
control system because a small variation in the displacement may cause severe damage to the ma-
nipulator. This redundancy may also be used to reduce force-unconstrained configurations. There
are two types of actuation redundancy: in-branch redundancy and additional actuated branches.

In-Branch Redundancy. Passive joints are replaced by active joints. For every redundant actu-
ator added within branch(es), the dimension of the forces resisting the external load is augmented
by one. This type of redundancy can be easily incorporated into an existing device. Firmani
and Podhorodeski [11] eliminated families of force-unconstrained configurations (singularities) by
adding a redundant actuator to the 3-RRR PPM, yielding a RRR-2RRR layout. Nokleby et al. [5]
and Zibil et al. [6] determined the force capabilities of the 3-RRR PPM by using an optimization-
based method and an analytical-based method, respectively. Nokleby et al. [12] investigated the
force-moment capabilities of different in-branch redundancy architectures. With in-branch redun-
dancy, there is no change in the workspace of the manipulator. However, there is an increase of
mass and/or inertia due to the addition of actuators on mobile links.

Additional Actuated Branches. An additional actuated branch is added to the system. For
every additional actuated branch incorporated into the system, the number of forces acting on the
mobile platform is augmented by one. This type of redundancy is of special interest when the
first joint of each branch is being actuated, e.g., 4-PRR and 4-RRR PPM, because there is no
significant added mass onto the mobile links allowing the device to be considered for high speed
applications. Buttolo and Hannaford [4] designed and analyzed the force capabilities of a 2-DOF 3-
RRR PPM haptic device, where all three branches are pinned together. Firmani and Podhorodeski
investigated the singularity loci of the 4-PRR PPM [13] and 4-RRR PPM [14]. The main problem
of this design is the reduction of the dexterity and workspace of the manipulator.

In this work, a study of the force-capabilities of the 3-RRR and 4-RRR PPMs is carried out.
The design of these manipulators is presented in the Appendix.

The remainder of the paper is structured in the following form. The next section presents the
derivation of the forward static force using screw theory. Then, the explicit methodology derived
by Zibil et al. [6] is summarized and some aspects of its formulation are improved. Also, the force
capabilities of the 3-RRR and 4-RRR PPMs are presented. The paper finishes with a discussion
of the results and conclusions.

2 FORCE ANALYSIS

2.1 Screw Theory

A screw ($) is a line in space having an associated pitch. A screw quantity can be represented
with the Plücker coordinates of a line summed with a term related to the screw direction multiplied
by the pitch of the screw [15]. The angular velocity ω and the translational velocity v of a point
of a moving body may be represented by three-dimensional vectors that can be assembled into a
screw quantity V called a twist, V = {ωT ;vT}T [16]. The pitch of the twist is the ratio of the
translational velocity to the angular velocity. The pitch of a twist is zero if there is pure rotational
velocity about the screw axis, while the pitch of the twist is infinite if there is pure translational
velocity along the screw axis.

On the other hand, the resultant force f and the moment m acting at a point on the body can
be assembled into a similar screw quantity F called a wrench , F = {fT ;mT}T [16]. The pitch of a
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wrench is the ratio of the moment to the force. A pure force is a wrench of zero pitch and a pure
moment is a wrench of infinite pitch.

In general, the twist and the wrench are composed of six elements, i.e., for a twist, there are three
rotations about and three translations along a reference frame; while for a wrench there are three
pure forces along and three moments about a reference frame. For a manipulator with n − dof ,
where n < 6, such as planar manipulators, the same 6− n coordinates of the joint twists and the
output twist will be zero at any configuration [17]. For planar manipulators, the screw system
of planar motion can be spanned by a rotation and two translations. Therefore, the twist and
the wrench will have only three non-zero coordinates. The twist is based on one angular velocity
ωz and two linear velocities vx and vy, i.e., V = {ωT ;vT}T = {ωz; vx, vy}

T . While the wrench
is comprised of two forces fx and fy and one moment mz, i.e., F = {fT ;mT}T = {fx, fy;mz}

T .
Another way to express the wrench is F = {f cosα, f sinα;mz}

T , where f and α are the magnitude
and direction of the force, respectively.

The forces that can be applied (sustained) by a branch can be modelled with associated recip-
rocal screws [15]. The force exerted by the kth actuated joint of the ith branch is characterized by
a screw, $′ki , reciprocal to all joints of the i

th branch except for the actuated joint k, i.e.,

$ji ⊛ $
′
ki
= 0, for j �= k (1)

where $ji denotes the screw coordinates of all joints j �= k of the ith branch and ⊛ denotes the
reciprocal product between two screws.

2.2 Forward Static Force Solution

The wrench applied by a parallel manipulator is the sum of wrenches applied by all m actuated
joints of the manipulator. In matrix form, the static force solution results:

F3×1 =
[
$′
]
3×m

wm×1 (2)

where [$′] is referred to as the associated reciprocal screw matrix and w the vector of wrench
intensities.

The torque applied by the kth actuated joint of the ith branch can be modelled as:

τki = wki
(
$ki ⊛ $

′
ki

)
(3)

Therefore, the wrench intensity is

wki =
τki(

$ki ⊛ $
′
ki

) (4)

The relationship among all the wrench intensities in the system yields:

w = [D] τ (5)

where [D] is a diagonal matrix whose entries are 1/($ki ⊛ $
′
ki
).

Combining Eqs. (2 and 5) results in the forward static force solution, i.e.,

[
$′D

]
3×m

τm×1 = F3×1 (6)

where [$′D] = [$′] [D].
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3 FORCE-MOMENT CAPABILITIES

3.1 Methodology

The force-moment capability problem can be formulated as a constrained optimization problem of
the following form:

maximize f or maximize mz

subject to: [$′D] τ = F

−τ imax ≤ τ i ≤ τ imax
(7)

where [$′D] is a known numerical matrix defined by the geometry and the pose of the manipulator,
F = {fx, fy;mz}

T = {f cosα, f sinα;mz}
T is the output wrench to be optimized, and τ imax is the

maximum output torque of the ith branch.
Nokleby et al. [5] noticed that greater output wrenches are obtained when the individual

actuators are close to their maximum capabilities. Zibil et al. [6] developed a solution which
explicitly sets the largest number of actuators to their maximum output capabilities. Both of
these works considered the direction α to be varied from 0 to 2π by assuming small increments.
This approach can be computationally expensive and also can be inaccurate because the maximum
forces will most likely occur within intervals of α. In this paper, the direction is considered as an
unknown variable. As a result, a much more accurate solution of the maximum (Fmax) and the
minimum (Fmin) forces of the force polygon can be determined.

In the following sub-sections four studies of force-moment capabilities of the 3-RRR and 4-
RRR PPMs with constant payload orientation will be presented: maximum force with a prescribed
moment, maximum applicable force, maximum moment with a prescribed force, and maximum
applicable moment. The results of these studies are presented in Figures 2 and 3. Note that some
force-moment capability results have been excluded from the plots because their values were very
large compared to the rest of the results in the workspace due to their close proximity to a singular
configuration ; consequently, a better overall greyscale gradient results.

3.2 Maximum Force with a Prescribed Moment

Let mz be a prescribed quantity. The vertices of the force polygon of the 3-RRR PPM are found
by setting two actuators to their maximum output capabilities. This is shown in Figure 1b, where
vertices are formed with the intersection of two lines. The third actuator will be working within
its output range and will be referred to as being in transition (τ t). Mathematically, the equality
constraint, or forward static force equation Eq. (6), contains five unknown variables, i.e., fx, fy,
and τ i for i = 1, 2, 3. By assuming two actuator torques to be evaluated at their maximum output
capabilities, a fully constrained system results. Thus, Eq. (6) may be rearranged as a linear system
of equations of the form Ax = b, where x =

[
fx fy τ t

]T
. All possible combinations of maxed

out torques and torque signs are considered. There are 12 combinations in total, i.e., three maxed
out torque combinations (two out of three output torques) and four sign combinations (each one of
the two maxed out torques can be either positive or negative). All combinations are evaluated and
the force polygon is generated by enclosing the solutions where the torque in transition does not
exceed its torque output capabilities. The maximum of the maximum forces, Fmax, corresponds to
the largest value of f that can be evaluated with the combinations. The minimum of the maximum
forces, Fmin, is determined by finding the shortest distance between the polygon and the centre of
the force space. Assume a pure force problem, i.e., mz = 0. Figures 2a and 2b illustrate the pure
force capabilities of the 3-RRR PPM, Fmin and Fmax, respectively.
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For the 4-RRR PPM, three actuators can be set to their maximum capabilities. There are 32
combinations, i.e., four maxed out torque combinations (three out of four actuators) and eight sign
combinations (each one of the three maxed out torques can be ±τ imax). The general equation that
provides the number of combinations for any m actuated branches is nc = 2

m−1m. Figures 3a and
3b show the pure force capabilities (Fmin and Fmax, respectively) throughout its workspace.

3.3 Maximum Applicable Force

The maximum force that can be applied by the manipulator has an associated moment. This
moment mz can be considered as an unknown value. Since there are 3+m unknown variables, i.e.,
fx, fy, mz, and τ i for i = 1, . . . ,m, in Eq. (6), all actuator outputs can be set to their maximum

capabilities. This yields a linear system of the form Ax = b, where x =
[
fx fy mz

]T
. The

number of combinations is based on the number of actuated branches and is given by the following
equation: nc = 2

m. That is, there are 8 and 16 combinations for the 3-RRR and 4-RRR PPMs,
respectively. For each pose of the manipulator, these points may be plotted in a force-moment
space, i.e., fx − fy −mz. The volume contained within these points represent the region in which
the manipulator is capable of applying or sustaining an output wrench. By projecting these points
on the force plane, a force polygon is generated.

For the 3-RRR PPM, Figures 2c and 2d show the minimum (Fmin) and maximum (Fmax) force
capabilities, respectively; while, Figures 2e and 2f illustrate their associated moments. Similarly,
the corresponding plots in Figure 3 show the maximum forces and associated moments of the 4-RRR
PPM.

3.4 Maximum Moment with a Prescribed Force

The maximum moment that can be applied with a prescribed force leads to a system of 1 +
m unknown variables, i.e., mz, and τ i for i = 1, . . . ,m, while fx and fy are known quantities.
Therefore, two actuator outputs will be in transition (τ ta and τ tb). This yields a linear system of
the form Ax = b, where x =

[
mz τ ta τ tb

]T
. The number of possible combinations is based on

the number of actuated branches and is given by the following equation: nc = 2
m−3(m−1)m. That

is, there are 6 and 24 combinations for the 3-RRR and 4-RRR PPMs, respectively. Combinations
are evaluated and the resulting largest mz, where the torques in transition do not exceed their
torque output capabilities, yields the maximum moment with a prescribed force.

Figures 2g and 3g show the pure moment capabilities (f = 0) of the 3-RRR and 4-RRR PPMs,
respectively.

3.5 Maximum Applicable Moment

The maximum moment that can be applied by the manipulator has an associated force. There
are 3 +m unknown variables, i.e., fx, fy, mz, and τ i for i = 1, . . . ,m. Since only mz has to be
maximized, one equation based on the signs of the last row of matrix [$′D]

3×m in Eq. (6) has to be
evaluated: ($′D3,1) (τ1max) + ($

′D3,2) (τ2max) + . . . + ($
′D3,m) (τmmax

) = mz. Two solutions exist
for mz, the maximum positive moment is obtained by making all the monomials positive; while,
the maximum negative moment occurs when all the monomials are negative.

Figures 2h and 3h show the maximum applicable moment of the 3-RRR and 4-RRR PPMs,
respectively. Figures 2i and 3i illustrate their associated forces.
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Figure 2: Force-Moment Capabilities of the 3-RRR PPM Throughout its Workspace.

4 DISCUSSION

The inclusion of an additional branch enhances the force-moment capabilities of the manipulator.
At first glance, the greyscale range of every plot shows a clear improvement for the manipulator
with redundancy. It is worth to mention that each plot was generated with approximately 2× 105

loci of locations. The number of excluded values in the capped figures was kept even between the
two manipulators.

A more detailed analysis is presented with some numerical indices. This comparison should be
carefully taken in hand because some of kinematic properties, such as singularities and reachable
workspace, of the 3-RRR and 4-RRR PPMs are different.
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Figure 3: Force-Moment Capabilities of the 4-RRR PPM. Throughout its Workspace

Nokleby et al. [12] described how force-moment capabilities tend to increase towards infinity
around locations in which the manipulator is at or near a singular configuration. For each ma-
nipulator, these singularities occur at different locations. A comparison of the results presented in
Figures 2 and 3 is carried out with indices that are not affected by large values. Maximum values
are not considered because they generally occur near singular configurations. The most significant
plots that were not capped are the minimum pure forces (Figures 2a and 3a) and the pure moments
(Figures 2g and 3g). For 3-RRR PPM, max(Fmin) = 40.35 N and max(mz) = 8.4 Nm; while, for
the 4-RRR PPM, max(Fmin) = 50.39 N and max(mz) = 11.2 Nm.

In this work, minimum and median values are adopted as indices of comparison. Minimum
values show the global minimum of either Fmin or Fmax that can be sustained at any location in the
workspace. The median is preferred over the mean because the results of the mean are affected by
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large values. The median is an adequate index due to the large amount of data values considered
and the nature of the plots, which represent smooth surfaces.

The median and minimum values1 of all the force-moment capability studies are summarized
in Table 1.

Table 1: Median and Minimum Values of the Force [N] and Moment [Nm] Capability Studies.

Study I: Maximum Force with a Prescribed Moment (Pure force mz = 0)

F̃min min(Fmin) F̃max min(Fmax)

3-RRR PPM 17.13 0 57.11 22.33

4-RRR PPM 34.47 20.61 66.24 46.3

Figures 2a and 2b

Figures 3a and 3b

Study II: Maximum Applicable Force with Associated Moments

F̃min min(Fmin) F̃max min(Fmax)

3-RRR PPM 31.22 17.41 79.76 53.8

4-RRR PPM 46.14 22.02 92.14 66.06

Figures 2c and 2d

Figures 3c and 3d

Study III: Maximum Moment with a Prescribed Force (Pure moment f = 0)

m̃z min(mz)

3-RRR PPM 2 0

4-RRR PPM 7.01 4.06
Figure 2g

Figure 3g

Study IV: Maximum Applicable Moment with Associated Forces

m̃z min(mz)

3-RRR PPM 6.87 2.21

4-RRR PPM 11.06 6.75
Figures 2h

Figures 3h

As shown in Table 1, the force-moment capabilities of the 4-RRR PPM show a marked improve-
ment over the results obtained with the 3-RRR PPM. Indices of the associated moments or forces
(last row of plots) were omitted because the objective of Studies II and IV was to maximize forces
and moments, respectively. The associated values are merely resultants of their corresponding
studies.

5 CONCLUSION

A previously developed methodology for determining the force-moment capabilities of parallel ma-
nipulators was improved. The proposed methodology turned out to be more accurate and compu-
tationally efficient. The force-moment capability analysis was formulated with concepts of screw
quantities and kinematic analysis. It was implemented for the non-redundant 3-RRR PPM and
the redundant 4-RRR PPM layouts. Four different studies of force-moment capabilities were pre-
sented and it was shown that in every study the inclusion of an additional branch improved the
force-moment capabilities of the manipulator at the expense of its dexterity and reachability.
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APPENDIX
The two revolute-jointed planar parallel manipulators used in this paper are shown in Figure

4. The dimensions and the actuator capabilities of the 3-RRR PPM are modeled after the Recon-
figurable Planar Parallel Manipulator (RPPM) designed by Fisher et al. [18]. This manipulator
is comprised of two platforms (base and mobile) that are connected by three branches, as shown
in Figure 4a. The base and the mobile platforms of the RPPM are equilateral triangles. The
design of the 4-RRR PPM involves two square platforms connected by four branches, as illustrated
in Figure 4b. Each branch of these manipulators contains two links and three revolute joints. The
first joints are active (actuated), while the second and third joints are passive joints. In Figure 4,
the active joints are indicated with circles. The dimensions of both platforms are similar. The
base and mobile platform edge lengths are 0.5 m and 0.2 m, respectively. The lengths of the
first and second links of each branch are 0.2 m. The maximum output torque capabilities of the
actuators (based on the existing actuators of the RPPM) is ±4.2 Nm.

a) b)

Figure 4: Planar Parallel Manipulators with Revolute Joints.
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