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Abstract
Singularities can be elusive but geometric considerations can reveal the singularities of a redundant
4R manipulator for positioning tasks. Points on a line, called transversal, that intersects all R-joint
axes, cannot move in the direction of this line. Conditions governing the existence of transversals
to four lines will be discussed. A way to find transversals is developed and tested with a numer-
ical example. A possible metric, or singularity proximity measure for this type of singularity is
investigated.
Keywords: singularity, 4-R manipulator, kinematic geometry

Singularités d’un Manipulateur Redondant de Positionnement à 4R

Résumé
Les singularités sont parfois difficiles à décrire, mais une approche géométrique permet de découvrir
certaines singularités d’un manipulateur redondant de positionnement à 4R. Tous les points appar-
tenant à une ligne, nommée transversal, qui intercepte tous les axes de rotation du manipulateur,
ne peuvent se déplacer dans la direction prescrite par cette ligne. Les conditions qui régissent
l’existence des transversals à quatre lignes seront discutées. De plus, une méthode pour les cal-
culer sera proposée et vérifiée avec un exemple numérique. Finalement, un métrique, ou une
mesure de proximité, associé à cette singularité sera étudié.
Mots clés: singularité, manipulateur 4-R, géométrie cinématique
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1 INTRODUCTION

Singularity in a serial manipulator represents a loss of mobility. Therefore singularity detection
and mapping is important in planning trajectories. This paper focuses on a geometric methodology,
that clearly illustrates positioning singularities in a four revolute (4R) serial manipulator. First, the
geometric nature of the singularities of interest will be studied. This will reveal how it applies to
4R manipulators and will lead to the formulation of the problem of finding transversals to four
lines. After introducing some peculiar but useful mathematical notation, a problem solution will
be outlined and various possible transversal configurations will be studied in terms of their effect
on restricting the positioning workspace.

2 QUALITATIVE DESCRIPTION OF THE SINGULARITY

The positioning singularities of a 4R manipulator can be best understood by considering the single
degree-of-freedom (1 dof) system of a single revolute joint (R-joint). Any point on any line that
intersects an R-joint axis will move on a circular trajectory and its velocity vector will always be
perpendicular to the line. Therefore, it is obvious that these points cannot move in the direction of
the line.

Consider now an open or serial kinematic chain of R-joints. The singularity described above
appears if there exist lines that intersect every R-joint axis. All the lines in space constitute a four-
parameter set (Hunt [1]). Therefore, the system of lines that is constrained to intersect any other
given one represents a set of ∞3 lines; a 3 dof set called a special linear line complex. Imposing
two or three given lines to intersect the set, the system is reduced to ∞2 or ∞1 lines, respectively.
These configurations are respectively called congruence and line series. The 1 dof set is commonly
known as a ruled surface. Finally, the system of lines that intersects four given ones represents∞0

lines, which is an integer. This number will be investigated from a geometrical point of view in
Section 3.1, but the existence of a finite number of solutions explains why a 4R manipulator cannot
avoid possible singular configurations and therefore warrants investigation.

3 TRANSVERSALS TO FOUR LINES

Transversals to four lines defined by the 4R-joint axes identify directions of forbidden translation
of certain points on the distal link or end effector (EE). The problem of finding those transversals
will be formulated algebraically, but it also has a very interesting geometric significance that will
be explained now.

3.1 Qualitative Approach to the Transversal Problem

In general, a line with 1 dof generates a ruled surface. For example, a line ruling three fixed
lines generates a quadric surface, i.e., a hyperboloid of one sheet, a hyperbolic paraboloid or, in
particular degenerate cases, a pair of planes. Such quadrics are doubly ruled, i.e., they have two
sets of generators, one called regulus and the other one, complementary regulus. A generator in
one regulus intersects all generators of the complementary regulus. Three fixed, generally skew,
lines defining the quadric belong to the same regulus. The moving or ruling line belongs to the
complementary one. Ruled surfaces in kinematics are treated in details by Hunt [1].

The 4R manipulator joint axes define four lines of which any set of three can be selected to
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generate a quadric surface. Then the remaining line can either pierce the quadric surface in two
different points, be tangent to it or simply have no real intersection. If the line pierces the quadric,
at each of the intersection points, two generators intersect it. One generator belongs to the regulus
of the three given lines but the other one belongs to the complementary regulus. The latter therefore
intersects the four lines and represents a transversal. Hence, there are in general two transversals
to four lines. If the fourth line is tangent to the quadric, a double line is obtained. However, if the
fourth line does not intersect the quadric, the transversals are complex and there is no translational
singularity for this pose. Using the distance between the fourth line and the quadric as a metric to
describe “closeness” to singularity will be proposed in Section 4.2.

3.2 Mathematical Notation

The mathematical notation will be introduced now. A point X will be designated with four homo-
geneous coordinates, i.e., X{x0 : x1 : x2 : x3}. When x0 = 1, the point is in Euclidean space,
while x0 = 0 represents a point on the absolute plane at infinity. A point X on plane a must satisfy
the plane equation A0x0 + A1x1 + A2x2 + A3x3 = 0. Plane coefficients are called homogeneous
plane coordinates, a{A0 : A1 : A2 : A3}.

Lines are defined by their six homogeneous Plücker coordinates. A line in space can be defined
with two points or two planes. Depending on which are used, the coordinates are called radial (for
points) or axial (for planes). A line C, defined by points X and Y , has coordinates Cr{c01 : c02 :
c03 : c23 : c31 : c12} where the six possible 2 × 2 determinants of a 2 × 4 matrix of homogeneous
point coordinates produce the line coordinates thus:

cij =

∣∣∣∣ xi xj

yi yj

∣∣∣∣ , i, j = 0, 1, 2, 3 (1)

An axial line is defined by planes a and b. These line coordinates are denoted in upper case,
Ca{C01 : C02 : C03 : C23 : C31 : C12}. In Eq. (1) the point coordinates are replaced by respective
plane coordinates. Both formulations may represent the same line. In such cases [c01, c02, c03] =
[C23, C31, C12] represents the direction of the line and [c23, c31, c12] = [C01, C02, C03] represents its
moment about the origin. Six numbers represent a line only if the direction vector is normal to the
moment vector. This is called the Plücker condition and it is expressed by Eq. (2). Both Hunt [1]
and Klein [2] deal with line geometry.

c01c23 + c02c31 + c03c12 = C01C23 + C02C31 + C03C12 = 0 (2)

3.3 Quadric Surface Defined by Three Lines

As explained in Section 3.1, the existence of real transversals to four given lines depends on the
type of intersection that one line has with the quadric defined by the three others. In this section,
the point equation of the quadric described by three lines will be obtained in terms of its line
coordinates. The desired surface is obtained by the motion of line M constrained to intersect the
three given lines P , Q and R. Based on Pottmann et al. [3], these intersection conditions are

3



readily written as:

P01m01 + P02m02 + P03m03 + P23m23 + P31m31 + P12m12 = 0 (3)
Q01m01 + Q02m02 + Q03m03 + Q23m23 + Q31m31 + Q12m12 = 0 (4)
R01m01 + R02m02 + R03m03 + R23m23 + R31m31 + R12m12 = 0 (5)

The quadric surface can be expressed in point coordinates, rather than in the coordinates of line
M, using the condition stating that a point X is on lineM, namely, (see Hodge and Pedoe [4] and
Sommerville [5])

m23x1 + m31x2 + m12x3 = 0 (6)
−m23x0 + m03x2 −m02x3 = 0 (7)
−m31x0 −m03x2 + m01x3 = 0 (8)
−m12x0 + m02x1 −m01x2 = 0 (9)

From this set of four equations, only two are independent. With Eqs. (3-5, 7,8), one can form the
following system of linear equations.

P01 P02 P03 P23 P31 P12

Q01 Q02 Q03 Q23 Q31 Q12

R01 R02 R03 R23 R31 R12

0 −x3 x2 −x0 0 0
x3 0 −x1 0 −x0 0




m01

m02

m03

m23

m31

m12

 =


0
0
0
0
0
0

 (10)

Because the line coefficients mij are homogeneous, the system of Eq. (10) can be solved by setting
any of them to unity. Choosing m12 = 1, Eq. (10) becomes:

P01 P02 P03 P23 P31 P12

Q01 Q02 Q03 Q23 Q31 Q12

R01 R02 R03 R23 R31 R12

0 −x3 x2 −x0 0 0
x3 0 −x1 0 −x0 0




m01

m02

m03

m23

m31

 =


−P12

−Q12

−R12

0
0
0

 (11)

Expressions for mij are lengthy sums of products that are not expanded here. To obtain the equation
of the quadric surface, these expressions for line M are substituted into Eq. (2) as

m01m23 + m02m31 + m03m12 = 0 (12)

Eq. (12) factors. One factor is a conic containing only x0 and x3. The other is the expected quadric
surface. Its 10 coefficients aij appear in its implicit equation below:

[
x0 x1 x2 x3

] 
a00 a01 a02 a03

a01 a11 a12 a13

a02 a12 a22 a23

a03 a13 a23 a33




x0

x1

x2

x3

 = 0 (13)
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3.4 Finding the Transversals

Here, a method to find the transversals T to four given lines (P ,Q,R and S) will be described. The
four intersection conditions and the Plücker condition for line T gives the following five equations.

P01t01 + P02t02 + P03t03 + P23t23 + P31t31 + P12t12 = 0 (14)
Q01t01 + Q02t02 + Q03t03 + Q23t23 + Q31t31 + Q12t12 = 0 (15)
R01t01 + R02t02 + R03t03 + R23t23 + R31t31 + R12t12 = 0 (16)

S01t01 + S02t02 + S03t03 + S23t23 + S31t31 + S12t12 = 0 (17)
t01t23 + t02t31 + t03t12 = 0 (18)

As an aside, it is interesting to note that Eqs. (14-16) are similar to Eqs. (3-5) of the previous
section. The above system of equations clearly demonstrates what was stated in Section 3.1, i.e.,
real transversals occur only if the fourth line intersects the quadric defined by the three other lines.
It can also be seen here that the choice of the three lines, among the four available, used to generate
the hyperboloid is arbitrary and has no influence on the resulting transversals. To continue, an
expression of t01, t02, t03 and t23 in terms of t31 and t12 can be obtained by solving the following
system of equations.

P01 P02 P03 P23

Q01 Q02 Q03 Q23

R01 R02 R03 R23

S01 S02 S03 S23




t01
t02
t03
t23

 =


−P31t31 − P12t12
−Q31t31 −Q12t12
−R31t31 −R12t12
−S31t31 − S12t12

 (19)

Expressions for t01, t02, t03 and t23, like those for mij , are too long to write out. Substituting those
results in the Plücker condition-Eq. (17)- gives a second order bivariate of the form

At231 + Bt31t12 + Ct212 = 0 (20)

where A, B and C are also too long to write here. Because the line coefficients tij are homoge-
neous, Eq. (20) can be reduced to an univariate by setting t31 or t12 to unity. A similar expression
was obtained by Teller and Hohmeyer [6]. This may have two real solutions, a double one or
two complex roots. Then, the other line coordinates (t01,t02,t03 and t23) are readily calculated by
back-substitution using Eq. (19).

3.5 Numerical Example

In this section, the formulæ already derived will be used in a numerical example. Consider the
4R manipulator illustrated in Figure 1. The line coordinates of the four axes of rotation and the
position of the joints are given in Table 1. The radial coordinates of the two transversals, as outlined
in Section 3.4, also appear there.

With the four lines, four different quadrics can be generated. They are illustrated in Figure 2.
One can see that the fourth line, which appears as a solid line, always pierces the quadric even if
the latter depends on the set of lines selected to generate the surface. The two other lines illustrated
are the two transversals, Tr1 and Tr2, plotted as dashed and dashed-dotted lines respectively.
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Table 1: Line and joint coordinates for the manipulator of Figure 1.

Line Joint position

Pa{0 : −2 : 0 : 0 : 0 : 1} P{1 : 2 : 0 : 0}

Qa{−3.7648 : 1 : 2.2409 : −0.6322 : 0.1115 : −1.1119} Q{1 : 1.1206 : 1.3160 : 1}

Ra{−0.0616 : 1 : −0.2226 : 0.1124 : −0.0389 : −0.2060} R{1 : 3.7638 : 0.6771 : 2}

Sa{−1.9337 : 1 : 1.1599 : −0.1627 : 0.1938 : −0.4383} S{1 : 3.3949 : 3.0851 : 3}

Tr1{−0.0001 : 0.2888 : −0.5003 : −2.1556 : 1 : 0.5776}

Tr2{−0.2634 : −0.1975 : −0.5704 : 0.1056 : 1 : −0.3951}

Figure 1: Example of a 4R manipulator.
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The transversals also appear in Figure 1. One can see that T2 intersects the end-effector. There-
fore, all points on the EE that are on T2 will not be able to move in the direction of T2. On the other
hand, T1 does not intersect the end effector; therefore no singularity is associated with this line.

(a) Quadric PQR. (b) Quadric PQS.

(c) Quadric PRS. (d) Quadric QRS.

Figure 2: Four quadric possibilities; their remaining line and two transversals.
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4 POSSIBLE USE OF A METRIC

As explained in Section 2, real transversals exist only if one of the four given lines intersects the
quadric surface ruled by the three others. Therefore, if the line does not intercept the quadric, the
shortest distance between those two elements might be used as a metric. To devise a figure of merit
in kinematics is often a quixotic enterprize because solution space, even if it is a metric one, bears
little or no significant relation to the space of Euclidean motion. Here the situation is satisfyingly
better. All four lines are Euclidean as is the quadric so measured distance is real. For this reason
it is believed that distance between line and quadric represents a useful, possibly good, way to
assess proximity to singularity. A procedure to find this distance will be described and a numerical
example will be used to study this metric and its possible use.

4.1 Shortest Distance Between a Quadric and a Line

Consider a remaining line S that has no real points on the quadric given by Eq. (13). The point X
on the quadric and closest to line S has to satisfy the following conditions:

1. The normal to the quadric surface on point X is perpendicular to line S.

2. The line normal to the quadric on point X has to intersect line S.

These conditions are easy to formulate mathematically but result in very lengthy expressions. The
coordinates of plane n tangent to the quadric surface on point X{1 : x1 : x2 : x3} can be obtained
with Eq. (21) (see Pottmann and Wallner [7] and Sommerville [5]). Coordinate x0 has been set to
unity in order to find the distance between the quadric and line S in Euclidean space.

N0

N1

N2

N3

 =


a00 a01 a02 a03

a01 a11 a12 a13

a02 a12 a22 a23

a03 a13 a23 a33




1
x1

x2

x3

 (21)

Therefore, the radial line Nr, defined by point X and the normal to the quadric on this point,
has the following Plücker line coordinates: Nr{N1 : N2 : N3 : x2N3 − x3N2 : x3N1 − x1N3 :
x1N2 − x2N1}. In order to find the shortest distance, line Nr has to be perpendicular to line S.
This condition appears as Eq. (22) which is simply the dot product of the two direction vectors.

N1S23 + N2S31 + N3S12 = 0 (22)

In Eq. (22), N1, N2 and N3 are linear function of x1, x2 and x3. It is therefore easy to obtain the
expression, Eq. (23), relating one variable to the two others.

(s01a11 + s02a12 + s03a13)x1 − (s01a12 + s02a22 + s03a23)x2

+(a13s01 + a23s02 + a33s03)x3 − (s01a01 + s02a02 + s03a03) = 0 (23)

Line Nr also has to intersect line S which can be written as Eq. (24). Substituting Eq. (23) in
Eq. (24) to eliminate x3, a second order bivariate in terms of x1 and x2 is obtained.

N1s23 + N2s31 + N3s12 + (x2N3 − x3N2)s01

+(x3N1 − x1N3)s02 + (x1N2 − x2N1)s03 = 0 (24)
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Also, recall that point X is on the quadric surface therefore it has to satisfy Eq. (13). Again,
substituting Eq. (23) in Eq. (13) returns another second order bivariate in terms of x1 and x2. The
two bivariates of Eq. (24) and Eq. (13) can be rewritten in the form of Eqs. (25,26) respectively.
These coefficients are too long to write.

θ1x
2
2 + (α1x1 + γ1)x2 + (ω1x

2
1 + σ1x1 + η1) = 0 (25)

θ2x
2
2 + (α2x1 + γ2)x2 + (ω2x

2
1 + σ2x1 + η2) = 0 (26)

A fourth order univariate can be obtained using Bezout’s method as described by Salmon [8]. The
univariate obtained by eliminating x2 is given in Eq. (27).

0 =(−θ2α
2
1ω2 + θ1α2α1ω2 − θ2

1ω
2
2 − θ1α

2
2ω1 + θ2α1α2ω1 − θ2

2ω
2
1 + 2θ1ω2θ2ω1)x

4
1

+ (−θ1α
2
2σ1 − 2θ2

1ω2σ2 + θ1α2α1σ2 + θ1α2γ1ω2 − θ2α
2
1σ2 + θ1γ2α1ω2

+ θ2α1α2σ1 − 2θ1α2γ2ω1 + 2θ1ω2θ2σ1 − 2θ2α1γ1ω2 + 2θ1σ2θ2ω1

− 2θ2
2ω1σ1 + θ2α1γ2ω1 + θ2γ1α2ω1)x

3
1 + (−2θ2

1ω2η2 − θ1γ
2
2ω1 − θ2

1σ
2
2

− θ2α
2
1η2 + θ1α2α1η2 + θ2γ1γ2ω1 + 2θ1σ2θ2σ1 + θ2α1α2η1 − θ1α

2
2η1

+ θ1α2γ1σ2 + 2θ1ω2θ2η1 + θ1γ2α1σ2 − 2θ2
2ω1η1 + θ1γ2γ1ω2 + θ2α1γ2σ1

+ 2θ1η2θ2ω1 − 2θ2α1γ1σ2 − 2θ1α2γ2σ1 − θ2γ
2
1ω2 − θ2

2σ
2
1 + θ2γ1α2σ1)x

2
1

+ (θ2γ1γ2σ1 + θ2α1γ2η1 − 2θ2
2σ1η1 − 2θ2α1γ1η2 − 2θ2

1σ2η2 − θ2γ
2
1σ2

+ θ1γ2γ1σ2 + θ1α2γ1η2 − θ1γ
2
2σ1 + 2θ1η2θ2σ1 − 2θ1α2γ2η1 + θ2γ1α2η1

+ 2θ1σ2θ2η1 + θ1γ2α1η2)x1 + θ2γ1γ2η1 + θ1γ2γ1η2 − θ1γ
2
2η1 − θ2γ

2
1η2

+ 2θ1η2θ2η1 − θ2
1η

2
2 − θ2

2η
2
1 (27)

Solving Eq. (27) returns four values of x1. The corresponding values of x2 can be calculated
with Eq. (28) that has been obtained by eliminating x2

2 from Eqs. (25,26). Then x3 can be easily
calculated using Eq. (23).

x2 =
(θ1ω2 − θ2ω1)x

2
1 + (θ1σ2 − θ2σ1)x1 + θ1η2 − θ2η1

(θ2α1 − θ1α2)x1 + θ2α1 − θ1α2

(28)

To each point X on the quadric, another point Y on line S has to be found to calculate the desired
distance. Point Y is the intersection of line Nr{N1 : N2 : N3 : x2N3 − x3N2 : x3N1 − x1N3 :
x1N2 − x2N1} and line S. Using the equation of a point on the line (two from line Nr and one
from line S) the system of Eq. (29) can be easily obtained. The four pairs of points X and Y may
be compared to select the shortest distance between the quadric and line S. There may be other
ways to find this distance however the one described here is complete in the sense that it finds the
distance as well as the coordinates of the closest points on the quadric and the line. N01 N02 N03

0 N12 −N31

−S12 0 S23

 y1

y2

y3

 =

 0
N01

S02

 (29)
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4.2 Application of the Distance as a Metric

A configuration with not real transversal can be obtained by changing the orientation of line Pa

in the system shown in Figure 1 and Table 1. Pa used to point in the z-axis direction. Now
P ′

a{−3 : 0 : 1 : 0 : 1 : 0} points in the y direction. Figure 2(d) shows that it will no longer
intersect the quadric. The four possible quadrics are shown in Figure 3. For each case, it can be
seen that the remaining line does not intersect the quadric and another line indicates the shortest
distance. The four values of shortest distance have been calculated and appear in Table 2.

Table 2: Shortest distance between a line and a quadric surface.

Quadric Distance
P ′QR 0.5495
P ′QS 1.5019
P ′RS 0.5920
QRS 0.8059

Table 2 shows that, given four lines, the shortest distance between a line and the quadric surface
ruled by the three others is not the same for the four possible quadrics that can be generated.
Consequently, this quantity cannot, without ambiguity, be used as a metric for the translational
singularities of the 4R manipulator that was configured.

5 CONCLUSION

A geometric approach was used to reveal singularities of a 4R positioning manipulators. All points
on the EE that are also on a line that intersects all R-joint axes will not be able, instantaneously, to
move along this line. In the case of a 4R manipulator, there are two possible real transversals and a
methodology to find them was proposed. It was also demonstrated that for four given lines, if any
of them intersects the quadric ruled by the three others, a double or two real transversal(s) exist. On
the other hand, if the line does not intersect the quadric, no real transversal can be found and it was
shown with a numerical example that the shortest distance between the two geometric elements
cannot be immediately used as a metric to indicate proximity to a singular pose. Nevertheless, in
an extension to this work, one might pursue further the notion of calculating a meaningful shortest
distance. For example, it is easy to compute shortest distances to the actual R-joint axes and study
how the manipulator may come to acquire a pose that entails lines of singular direction.
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(a) Quadric P ′QR (b) Quadric P ′QS

(c) Quadric P ′RS (d) Quadric QRS

Figure 3: Four possible quadrics; their remaining line and the shortest distance.
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