
Mechanical integrators for the inverse dynamics of dissipative multibody systems

S. Uhlar1, P. Betsch2

1 Chair of Computational Mechanics, Department of Mechanical Engineering, University of Siegen, Germany,

uhlar@imr.mb.uni-siegen.de

2Chair of Computational Mechanics, Department of Mechanical Engineering, University of Siegen, Germany,

betsch@imr.mb.uni-siegen.de

Abstract

A unified approach for the description of multibody systems is presented, relying on a rotationless

formulation for rigid bodies. The set of differential algebraic equations governing the motion of

multibody dynamics does not only beneficially offer the design of energy-momentum schemes but

it also bears the advantage to be extended by vital modeling features. In this spirit we present

within this contribution the modeling of frictional phenomena such as joint friction and the in-

corporation of control constraints. Both features rely on a specific augmentation technique which

incorporates rotational degrees of freedom into the rotationless formulation. The example of a

partially controlled movement of a free floating parallel platform afflicted with joint friction will

demonstrate the performance of the newly developed energy-momentum consistent scheme.

Keywords: Differential algebraic equations, multibody systems, dissipation, energy consistency,

control.
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1 INTRODUCTION

The present work relies on a specific rotationless formulation of multibody dynamics. The con-

figuration of each individual rigid body is characterized by a set of redundant coordinates. The

corresponding equations of motion assume the form of differential-algebraic equations (DAEs).

Due to the fact that the mass matrix is constant, the DAEs have a particularly simple structure

which turns out to be highly beneficial to the design of conserving time-stepping schemes. Con-

serving schemes, in particular energy-momentum schemes and their energy decaying variants, are

well-known to provide enhanced numerical stability properties (see, for example, Gonzalez &

Simo [10] or Ibrahimbegović et al. [12]). At the same time, the DAE structure offers the benefit to

simply append new modeling features. In this connection we will outline the coordinate augmen-

tation technique, the modeling of joint friction and the incorporation of control constraints.

The coordinate augmentation technique was first applied to planar multibody systems in Betsch

and Uhlar [4], see also [22]. This feature can be regarded as a modeling technique since it enables

the introduction of any arbitrary value, e.g. a relative joint angle. It also forms the base for the

modeling of joint friction, since the joint friction torque commonly depends on the relative joint

angle.

For the modeling of dissipation, more precisely joint friction, we rely on thermodynamic models

arising from the constitutive modeling in material mechanics. These models have the advantage of

calculating the correct amount of dissipation, while retaining the ability of augmenting the models

in such a way that they can reproduce experimental results by parameter identification. The ideas

to this approach go back to the modeling of viscoelastic material behavior for dynamics, introduc-

ing an energy-consistent integration scheme due to Gross [11]. For finite elasto-plasto-dynamics

energy consistent schemes have been developed by Noels et al. [17], Mohr et al. [14, 15, 16] or

Armero [1]. We will basically follow these ideas and break them down to the 1D case, and finally

derive an energy-momentum consistent time stepping scheme.

We outline in the following that the present approach to the simulation of multibody dynamics can

easily accommodate control (or servo) constraints. Control constraints can be directly appended

to the present DAEs. This makes possible to partially specify the motion of a multibody system.

In particular, inverse dynamics problems can be dealt with in the present simulation framework.

It turns out that the underlying rotationless description along with the coordinate augmentation

technique yields simple-structured control contributions to the DAEs. In particular, the Jacobian

associated with the control constraints is typically of Boolean (or binary) form. This is in contrast

to formulations in terms of generalized coordinates, see Blajer and Kolodziejczyk [5] and the ref-

erences therein.

An outline of the rest of the paper is as follows. Section 2 contains the continuous and discrete

equations of motion governing the motion of multibody systems. The advocated rotationless for-

mulation along with the coordinate augmentation is presented in Section 3. The modeling of

dissipation, applying a plasticity model for joint friction will be outlined in Section 4, rendering

an energy-consistent time integration scheme. Additionally, we show that control (or servo) con-

straints can be easily appended to the present DAEs. The conserving numerical integration of the
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DAEs is described in Section 5. The performance of the presented time stepping scheme along

with all addressed features is carried out with the example of a free floating parallel platform in

Section 6.

2 GOVERNING EQUATIONS OF MOTION

In this section we outline the equations of motion which provide a uniform framework for the

rotationless formulation of multibody dynamics. In the first instance we focus only on discrete

mechanical systems which are holonomic and scleronomic (extensions for the rheonomic case can

be found in Section 5). Accordingly, the equations of motion assume the form

q̇ − v = 0
Mv̇ + ∇V (q) + GT (q)λ = 0

Φ(q) = 0
(1)

Here, q(t) ∈ R
n specifies the configuration of the mechanical system at time t, and v(t) ∈ R

n is

the velocity vector. Together (q, v) form the vector of state space coordinates (see, for example,

Rosenberg [18]). Here, V (q) ∈ R is a potential energy function and Φ(q) ∈ R
m is a vector

of geometric constraint functions, while G = DΦ(q) ∈ R
m×n is the constraint Jacobian and

λ ∈ R
m a vector of multipliers which specify the relative magnitude of the constraint forces. In

the description above, it is tacitly assumed that the m constraints are independent.

Due to the presence of holonomic (or geometric) constraints (1)3, the configuration space of the

system is given by

Q = {q(t) ∈ R
n|Φ(q) = 0} (2)

The equations of motion (1) form a set of index-3 differential-algebraic equations (DAEs) (see, for

example, Kunkel and Mehrmann [13]). They can be directly derived from the classical Lagrange’s

equations.

2.1 Discretization of the DAEs, Basic-Energy-Momentum Scheme

The discretization of the continuous equations of motion (1) is carried out by applying the Basic-

Energy-Momentum (BEM) scheme introduced in [4]. To summarize, we obtain the following set

of discretized algebraic equations for the time interval [tn, tn+1] with the step size ∆t = tn+1 − tn

qn+1 − qn =
∆t

2
(vn + vn+1)

M (vn+1 − vn) = −∆t ∇̄V (qn, qn+1) − ∆t Ḡ(qn, qn+1)
T λ

Φ(qn+1) = 0

(3)

The algorithmic conservation properties of the BEM scheme are linked to the notion of a discrete

gradient (or derivative) of a function f : R
n 7→ R. In the present work ∇̄f(qn, qn+1) denotes

the discrete gradient of f [8, 9]. It is worth mentioning that if f is at most quadratic then the

discrete gradient coincides with the standard gradient evaluated in the mid-point configuration

qn+1/2 = (qn + qn+1)/2, that is, in this case ∇̄f(qn, qn+1) = ∇f(qn+1/2).

Remark 2.1 Although the rotationless formulation is accompanied with a large number of un-

knowns, a reduction can be achieved by applying the size reduction technique proposed in [2, 3, 4].
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3 ROTATIONLESS FORMULATION OF THE RIGID BODY

The configuration of a rigid body in the three-dimensional Euclidean space is characterized by

the placement of its center of mass ϕ(t) ∈ R
3 and a right-handed body frame {dI}, dI(t) ∈ R

3

(I = 1, 2, 3), which specifies the orientation of the body (Fig. 1). The vectors dI will be

e1

e2

e3

d1

d2d3

Figure 1: The rigid body – rotationless description.

occasionally called directors. Let X = Xi ei
§ be a material point which belongs to the reference

configuration V ⊂ R
3 of the rigid body. The spatial position of X ∈ V at time t relative to an

inertial Cartesian basis {eI} can now be characterized by

x(X, t) = ϕ(t) + Xi di(t) (4)

Obviously, the configuration of the rigid body can be described by the following vector of redun-

dant coordinates (n = 12)

q =
[
ϕT dT

1 dT
2 dT

3

]T
(5)

Redundancy implies additional constraint equations, which in this case reflect the orthonormality

of the director frame for all times. Thus this leads to m = 6 independent internal constraints with

associated constraint functions

Φint(q) =
[
dT

1 d1 − 1 dT
2 d2 − 1 dT

3 d3 − 1 dT
1 d2 dT

1 d3 dT
2 d3

]T
(6)

As outlined in detail in [3] we distinguish between internal and external constraint equations, where

external constraints handle joint connections, linking rigid bodies.

The kinetic energy can be expressed as 1/2vT M v, where in contrast to other coordinates (e.g.

Euler angles, quaternions), the mass matrix is constant and has a diagonal structure. Specifically it

§In this work the summation convention applies to repeated lower case Roman indices.
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is given by

M =







M I 0 0 0
0 E1I 0 0
0 0 E2I 0
0 0 0 E3I







(7)

where I and 0 are the 3× 3 identity and zero matrices. M denotes the total mass of the rigid body

and EI (I = 1, 2, 3) are the principal values of the convected Euler tensor [4].

3.1 Coordinate augmentation

In this chapter we briefly recapitulate the coordinate augmentation technique presented in [4] since

it plays a major role within the present contribution. As already outlined in the introduction, the

rotationless formulation does not concern rotational DOF. Yet these are of major importance for

the modeling of real mechanical systems, e.g. for implementing joint torques (see [22]) or joint

friction. The introduction of rotational coordinates can be demonstrated clearly with the example

of a planar revolute pair as depicted in Fig. 2. First, we extend the configuration vector by the

̺1

̺2

e1

e2

d1
1

d2
1

d1
2

d2
2

ϕ1

ϕ2

θ1

Θ

Figure 2: The planar revolute pair.

augmented variable Θ, which then leads to

qori =

[
q1

q2

]

, q =

[
qori

Θ

]

(8)

Augmented variables imply additional constraint equations, in this case we obtain

Φaug = d2
2 · d

1
1 + d2

2 · d
1
2

︸ ︷︷ ︸

Φ1
aug(q

ori
)

+ sin Θ − cos Θ
︸ ︷︷ ︸

Φ2
aug(Θ)

(9)
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The corresponding constraint Jacobian in the continuous case yields

Gaug(q) =
[
G1

aug(qori) G2
aug(Θ)

]
(10)

with
G1

aug(qori) =
[
0T (d2

2)
T (d2

2)
T 0T 0T (d1

1 + d1
2)

T
]

G2
aug(Θ) = sin Θ + cos Θ

(11)

3.1.1 Discrete constraint Jacobian

As obvious from equation (9), Φ1
aug(qori) is only quadratic, therefore the associated discrete gradi-

ent coincides with the mid-point evaluation of its corresponding constraint Jacobian (G1
aug((qori)n+ 1

2

)).
In contrast to this, the constraint Jacobian of the second part of the augmented constraint equation

Φ2
aug(Θ) must be evaluated according to

G2
aug(Θn, Θn+1) =

Φ2
aug(Θn+1) − Φ2

aug(Θn)

Θn+1 − Θn

(12)

which can be interpreted as a G-equivariant discrete derivative in the sense of Gonzalez [8].

Remark 3.1 The augmentation technique is not only restricted to the implementation of rotational

DOF, any arbitrary value which is necessary for modeling purpose can be incorporated. In this

sense the augmentation technique can be regarded as a modeling technique, e.g. for measuring

values.

4 MODELING OF DISSIPATION

In this section we outline the incorporation of dissipative effects into our multibody framework,

followed by the modeling of joint plasticity, based upon [21]. This can be regarded as a thermo-

dynamic consistent model which captures the transient effects of stiction and sliding (see Section

4.2).

4.1 Incorporation of dissipation

The implementation of dissipative effects into the multibody framework presented before, relies

on the coordinate augmentation technique outlined in Section 3.1. Since our dissipative model pre-

sented within this contribution is one dimensional, acting on original or augmented coordinates, the

incorporation is performed by adding an internal force to the equations of motion in the continuous

case. This internal force vector has only entries at the corresponding coordinates the dissipation is

acting on, therefore in general the continuous equations of motion can be written as

q̇ − v = 0
Mv̇ + ∇V (q) + GT (q)λ + F int = 0

Φ(q) = 0
(13)

To obtain a consistent time stepping scheme for dissipative multibody systems, we need to dis-

cretize the set of equations above. First we apply the BEM-scheme presented in Section 2.1,

2009 CCToMM M3 Symposium 6



whereby we seek an algorithmic force evaluation which satisfies the discrete consistency condition

R := Hn+1 − Hn + ∆D = 0, where H = T + V is the Hamiltonian function and D the dissipa-

tion (for further details see [21]). In general we obtain the following set of discretized algebraic

equations

qn+1 − qn =
∆t

2
(vn + vn+1)

M (vn+1 − vn) = −∆t ∇̄V (qn, qn+1) − ∆t Ḡ(qn, qn+1)
T λ + ∆t F

alg
int

Φ(qn+1) = 0

(14)

The above scheme represents an extension of the BEM-scheme (3) and will be referred to as the

Energy-Momentum-Consistent (EMC) scheme. The character of F
alg
int will be revealed in detail

within the next section, since it depends on a respective dissipative model.

4.2 Plasticity model

For modeling the characteristics of stiction and sliding, we choose in the first instance a rheological

model of perfect plasticity. In order to apply this model to a dynamical problem, we introduce a

friction-element oscillator [14] and discuss all necessary steps with this example. All required

basic notations of perfect plasticity can be found in [20].

4.2.1 Friction-Element-Oscillator

EE FmaxFmax

mm

q

Figure 3: Friction element oscillator.

Following the lines of [14], we derive the equations of motion, show how to implement our

plasticity model and how to perform a consistent integration. Starting with the additive split of the

displacement

q = qe + qp ⇒ qe = q − qp (15)

The equations of motion can directly be written as

m q̈ + Fint + Fext = 0 (16)

Assuming a linear spring characteristic for the pure elastic case, the free energy function yields

Ψ(qe, E) =
1

2
E (qe)2 =

1

2
E (q − qp)2

(17)
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A differentiation of the free energy function wrt qe yields the internal force

Fint = ∂qeΨ = E qe = E (q − qp) (18)

The determination when plastic slip occurs can be stated by defining the yield condition

Φ(Fint) = |Fint| − Fmax ≤ 0 (19)

It is obvious from the equation above that plastic deformation only occurs if |Fint| = Fmax, leading

to the following evolution equation (see [20])

q̇p = λ̇
Fint

|Fint|
= λ̇ sign Fint (20)

While the loading and unloading conditions can be written as

Φ(Fint) < 0 λ̇ = 0 and Φ(Fint) = 0 λ̇ > 0 (21)

leading to the Kuhn-Tucker complementary condition

λ̇ Φ(Fint) = 0 (22)

4.2.2 Energy-consistent disretization

The discretization of the equations of motion in (16) relies again on the mid-point rule

qn+1 − qn =
∆ t

2
(vn+1 + vn)

m (vn+1 − vn) + ∆t Fint(1/2) + ∆t Fext(1/2) = 0
(23)

The rheological model is reflected in the internal force Fint. A mid-point evaluation of Fint does

not yield a consistent integration. We need to apply an algorithmic force evaluation according to

[21]. For the plasticity model the dissipation yields

D = Fint q̇
p (24)

or incrementaly

∆D = ∆ λ Fmax (25)

The algorithmic force can be expressed according to [21] as

F alg
int =

Ψ2 − Ψ1

q2 − q1

+
∆D

q2 − q1

(26)

Substituting Fint(1/2) in Equation (23) by the algorithmic force evaluation, yields a consistent

integration scheme for the friction element oscillator. This can be directly applied to augmented

joint coordinates.
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5 INCORPORATION OF CONTROL CONSTRAINTS

For the introduction of control constraints we rely on the set of DAEs as presented in 3. As outlined

in the Introduction one of the benefits of the DAE structure is the simple extension of the scheme

by additional constraints. These control constraints can be appended in a straightforward way. This

introduction is accompanied with a corresponding constraint Jacobian according to

q̇ = v

Mv̇ = −∇V (q) − GT (q)λ − BT u

0 = b(q) − γ(t)
0 = Φ(q)

(27)

In contrast to Equation (1) we find the new algebraic constraints in (1)3, playing the role of control

(or servo) constraints. In the rotationless formulation b : R
n 7→ R

mc is typically linear (mc

denotes the number of control constraints). Since we confine our attention to standard rheonomic

constraints, the input transformation matrix B = Db(q) ∈ R
mc×n is constant. The associated

Lagrange multipliers u ∈ R
mc play the role of control inputs. We refer to Blajer and Kolodziejczyk

[5] for a more general framework of control constraints.

5.1 Conserving integration of the DAEs

A corresponding energy-momentum (EM) conserving time-stepping scheme with mixed holo-

nomic and control constraints can be obtained by a direct discretization of the DAEs (27) and

yields

qn+1 − qn =
∆t

2
(vn + vn+1)

M (vn+1 − vn) = −∆t
{
∇̄V (qn, qn+1) + G(qn, qn+1)

T λ̄ + BT ū
}

0 = b(qn+1) − γ(tn+1)
0 = Φ(qn+1)

(28)

The scheme above is similar to the BEM-scheme given above, but is extended by the newly ap-

pended constraints. The application of Equations (28) makes possible the determination of the

control inputs ū ∈ R
mc in a straightforward way, which is in contrast to typical procedures while

dealing with inverse dynamics problems (see e.g. [6, 7, 19]).

6 NUMERICAL EXAMPLE

Our numerical example deals with a free floating (no gravity) planar parallel manipulator. The

system at hand has six degrees of freedom (namely the three angles of rotation Θ1, Θ2, Θ3 and

the 3 DOF of the platform body 8). The intention is to let body number 7 move upon a prescribed

trajectory, while we actuate the joints Θ1, Θ2 and Θ3. This means that we deal with an under-

actuated control problem. This example was studied in detail in [22], where all modeling steps

concerning the implementation and the augmentation can be found. We confine our attention on

the implementation of joint friction, applying the presented plasticity model. The goal is to point

out how important an accurate modeling of joint friction for control problems is. The results will

compare the necessary actuation torques for the conservative case, with the values obtained in the

friction afflicted case.
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Figure 4: Schematics of the RPR-manipulator.

The system we want to investigate is depicted in Fig. 4. In contrast to the implementation in

[22], we activate joint friction in the revolute joints (acting on Θ1, Θ2, Θ3). For the simulation we

choose the following values for the plasticity joint friction model: a spring stiffness of E = 350
and a breakaway force of Fmax = 50. All other parameters concerning masses, inertia and ge-

ometry coincide with the values used in [22], the initial configuration and the prescribed figure-8

trajectory are provided in detail in the reference cited before (all values specified are provided in

SI-units).

Figure 5b shows the evolution of the augmented angles ΘI , I = 1, 2, 3, while Fig. 5a shows the
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Figure 5: a) Comparisson of necessary inputs for the non-conservativenc and conservativec case,

b) Evolution of the driven angles.

comparison of the necessary driving torques, once with activated joint friction (nc) and once for
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the conservative case (c). Obviously joint friction has a major influence on control problems. De-

pending on the values chosen for the friction model, the driving torques exceed notably the values

for the conservative case. We choose a time step size of ∆t = 0.01.

7 CONCLUSIONS

The present contribution outlined the incorporation of dissipation and the modeling of control prob-

lems within a rotationless formulation for rigid body dynamics, rendering an energy-consistent

time stepping scheme. Concerning the modeling of dissipation we showed that only thermo-

dynamic consistent models form the base for the construction of a mechanical integrator. The

introduction of control constraints was performed by simply extending the DAE-set by additional

control constraints accompanied with a constraint Jacobian of Boolean type. This leads to a unified

approach for solving inverse dynamics problems in one step, which is in contrast to other common

approaches. The performance of our scheme was clearly demonstrated with the example of a free

floating manipulator, pointing out the importance of an adequate model for joint friction and its

influence on the corresponding control inputs.
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