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Abstract
Robotic wrists with light weight and high stiffness are needed for accurate manipulation tasks. A
prototype of a novel two-degree-of-freedom wrist based on spherical cam-rollers was developed
at McGill Univeristy with the aim of replacing bevel gears in robotic manipulators, as these gears
bring about backlash and Columb friction, that mars robot performance. In order to identify the
stiffness and damping parameters of the prototype, a testbed was designed and fabricated. This
paper reports the design and formulation of a mathematical model of this testbed, on which the
identification procedure will be implemented.
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Modélisation et simulation d’un banc d’essai pour un poignet tangage-roulis construit à
base de mécanismes à cames et roulements

Résumé
Les manipulations précises exigent des poignets robotiques légers et rigides. L’Université McGill
a mis au point un prototype novateur de poignet à deux degrés de liberté basé sur des transmissions
à cames et rouleaux. L’élimination des engrenages coniques des manipulateurs robotiques qui pro-
duisent du jeu et du frottement de Coulomb permettra d’améliorer la performance des robots. Les
auteurs ont conçu un banc d’essai afin de déterminer les paramètres de raideur et d’amortissement
du poignet. Cet article présente le modèle mathématique du banc d’essai mis au point par les au-
teurs pour déterminer les paramètres de raideur et d’amortissement du poignet.

Mots-clé: cames, poignet tangage-roulis, banc d’essai, modèle mathématique, identification des
paramètres
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1 INTRODUCTION

Robotic wrists are commonly used in manipulators for applications that require a large dexterous
workspace [1]. Epicyclic bevel gear trains are common architectures for wrists, due to their rela-
tive simplicity and compactness. Rosheim [1] developed a large survey on mechanisms commonly
used in different types of robotic wrists. In the last two decades, several studies have been con-
ducted on the structural synthesis of spherical wrist mechanisms. Tsai [2] introduced the canonical
graph of a bevel-gear robotic wrist mechanisms to avoid the pseudoisomorphic problem, having
established a complete atlas of bevel-gear wrist mechanisms with up to eight links. Hsu et al.
[3] developed an efficient methodology for structural synthesis of all the three-degree-of-freedom
(dof) robotic wrist mechanisms with N links from the catalog of two-dof geared kinematic chains
with N − 1 links. In fact, as a robotic wrist is to be attached to a moving arm, design crite-
ria for such wrists are compactness, accuracy, light weight, high mechanical stiffness, and low
backlash. However, the conventional mechanical transmissions based on gears, mentioned above,
entail drawbacks in robotics applications, such as backlash, unavoidable friction, and low stiffness.

Researchers have reported efforts to design wrists with different approaches in order to improve
their performance. Wiitala and Stanisic [4] proposed an overconstrained mechanism with a sym-
metric spherical eight-bar linkage, whose significant achievement is a hemisphere-singularity-free
workspace. A three-dof parallel spherical wrist was designed by Gosselin et al., the “Agile Eye”
[5], employing both revolute and spherical joints. Spherical Stephenson mechanisms combined
with cam-rollers were proposed by Hernandez et al. [6] to implement a pitch-roll wrist.

Recently, a two-dof gearless pitch-roll wrist (PRW) [7] based on spherical cam-rollers was
developed at McGill University; its physical prototype is shown in Fig. 1. The mechanism is
composed of: two sets of input conical roller-carriers, one outside of the carrier and visible in
Fig. 1, the other inside and hidden in the same photograph; each roller set drives one of two co-
axial, conjugate, multi-lobe spherical cams, one external and visible in Fig. 1, the other internal and
hidden in the same figure. The rollers from the two roller-carriers drive the double-cam assembly
to produce a differential motion. The two cams work alternatively to ensure a positive motion.
The wrist has the advantages of high stiffness and low backlash, inherent to cam transmissions.
Moreover, the wrist offers an unlimited workspace. The downside of the prototype is its size
and weight. Actually, the latter is a consequence of the former, which was dictated by budgetary
constraints. Indeed, the size was determined by the smallest possible rollers found in the market
for non-precision bearings. Using the latter would have substantially increased the prototype cost.

The paper begins with a description of the testbed, which is designed to conduct tests on the
performance of the above-mentioned wrist. Then, a mathematical model of the testbed is derived
by means of a Lagrangian formulation. The main aim of this model lies in allowing for parameter
identification. Finally, the dynamic analysis and frequency response are reported and discussed;
these results will play a key role in the parameter identification to be conducted shortly afterwards.
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Figure 1: Prototype of the Pitch-Roll Wrist

2 TESTBED DESCRIPTION

The pitch-roll wrist testbed, residing in the Robotic Mechanical Systems Laboratory, McGill Uni-
versity, is set up to operate the prototype of the Spherical Epicyclic Cam Train (SECT) and acquire
the measured data. The testbed, shown in Fig. 2, whose iconic model is displayed in Fig. 3, is
composed of several mechanical parts and electric hardware, namely,

• the SECT, which comprises the epicyclic train at the core of the PRW.
• two torque sensors, to measure the input shaft torques connected inline with the two servo

motors.
• four couplings: flexible shaft couplings are used to connect the two motors, torque sensors,

and the SECT input shafts.
• the load and its counterweight: a gripper is used as a load, and a counterweight, diametrically

opposite to the gripper, is provided for static balancing.
• two brushless servomotors, the amplifier and the data-acquisition system, which consists of

a Digital/Analog (D/A) convertor.

Figure 2: Pitch-Roll Wrist testbed

The electric hardware setup involves torque sensors, a host computer and all needed I/O devices.
A host computer with the Windows XP operating system is used to drive the servomotors and
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to communicate with the data-acquisition system. The latter, supplied by Quanser Consulting
Inc., consists of hardware, namely, Q8 Hardware-in-the-Loop (HIL) Control Board and the D/A
Convertor Card, as well as software, namely, the Quanser Control Platform. The latter is controlled
by QuaRC, which is a multi-functional rapid control development and deployment environment,
and is readily integrated with MATLAB Simulink. QuaRC can communicate via the Internet,
allowing the user to download controllers anywhere and control them from a remote location,
change the control parameters while the controller runs, plot real-time data and save them directly
into a MATLAB workspace or file.

Figure 3: Iconic model of the Pitch-Roll Wrist testbed

3 MODEL DEVELOPMENT

In developing the mathematical model for the PRW testbed described above, the Lagrange formu-
lation is adopted. The transfer matrix of the output velocity to the input velocity is derived based
on the iconic model of the testbed.

3.1 Iconic Model of the Testbed and Assumptions

In the iconic model of the testbed, illustrated in Fig. 3, the hatched sections are shown as clamped
positions where the shafts are held by bearings. The shaft carrying the gripper is mounted and
clamped by two bearings located at the centre and the edge of the central ring. The notation
adopted is listed here.

k1: torsional stiffness of couplings 1 and 3
k2: torsional stiffness of couplings 2 and 4
c1: coefficient of torsional viscous damping of couplings 1 and 3 (this also takes into account

the damping present in the roller bearings of the two motors)
c2: coefficient of torsional viscous damping of couplings 2 and 4
c3: coefficient of viscous torsional damping of the load upon rolling (this takes into account the

damping present in the roller bearings at the clamped positions)
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J1: moment-of-inertia of motors 1 and 2
J2: combined moment-of-inertia of the roller-carrier, the rollers and attached shafts
IL: combined moment-of-inertia matrix of the cam shaft, the central cam-carrier ring, gripper

and conjugate spherical cams
θ̇1, θ̇2: angular velocities of motors 1 and 2, respectively
θ̇3: angular velocity of the shaft between couplings 1 and 2
θ̇4: angular velocity of the shaft between couplings 3 and 4

θ̇5, θ̇6: angular velocities of the two input shafts
θ̇7, θ̇8: rolling and pitching angular velocities of the output cam shaft
τ1, τ2: torques measured by the sensors on the input shafts of the SECT

The double output of the SECT, rolling and pitching angular velocities θ̇7 and θ̇8, is a function of
the two angular velocities of the input shafts, θ̇5 and θ̇6. The input-output relation of the SECT is
[7] [

θ̇7

θ̇8

]
=

[
1/2 1/2

N/2M −N/2M

] [
θ̇5

θ̇6

]
(1)

where M (= 4) is the number of lobes of the spherical cams and N (= 7) is the number of rollers
on each side of the roller-carrying plates of the SECT. Firstly, we assume that all shafts, connec-
tors, cams and loads are rigid bodies, and all bodies of the SECT are lumped in three rigid bodies,
namely, the two input plates together with their rollers and the combination of the central ring
together with the cam shaft and gripper. Then, all springs and dashpots are assumed to operate
within their linear range. Finally, the composite body of the cam-shaft-gripper-ring is assumed to
be statically balanced with its centre of mass located at the intersection O of the axes of pitching
and rolling, based on the design of the SECT, the gripper and the counterweight.

3.2 Derivation of the Mathematical Model

We formulate the governing equations using a Lagrangian approach [8]. If we let q be the vector
of independent generalized coordinates, then, the Lagrange equation of the system is given below:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=
∂(Π−∆)

∂q̇
(2)

where
L: the Lagrangian of the system, given by L = T − V
T : the total kinetic energy of the system
V : the total potential energy of the system
Π: the power supplied to the system by force sources
∆: the Rayleigh dissipation function associated with all the dashpots in the system
q: the six-dimensional vector of angular displacements θi, for i = 3, 4,. . . , 8

Notice that the two angular velocities θ̇1 and θ̇2 of the two motors are specified, which play the
role of control variables and hence, are not generalized coordinates. As well, given that the system
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is motion-driven, the power Π supplied by force sources vanishes, i.e., Π = 0
. The total kinetic energy is determined as the sum of all the individual kinetic energies of the
different components in the system and is given by

T =
1

2
J1θ̇1

2
+

1

2
J1θ̇2

2
+

1

2
J2θ̇5

2
+

1

2
J2θ̇6

2
+

1

2
ωT

LILωL (3)

Notice also that the 3 × 3 inertia matrix IL is a constant when referred to a moving frame, with
origin at O, the X-axis defined as the axis of pitching, the Y -axis as the axis of rolling, and the
Z-axis formed by the right-hand rule. In this frame,

IL =

 H3 0 0
0 J3 0
0 0 K3

 , ωL =

 θ̇7

θ̇8

0

 (4a)

whence
1

2
ωT

LILωL =
1

2
H3θ̇7

2
+

1

2
J3θ̇8

2
(4b)

Substituting eq.(4b) in eq.(3) yields

T =
1

2
J1θ̇1

2
+

1

2
J1θ̇2

2
+

1

2
J2θ̇5

2
+

1

2
J2θ̇6

2
+

1

2
H3θ̇7

2
+

1

2
J3θ̇8

2
(5)

The total potential energy is determined by the elastic elements, while gravity does not intervene,
i.e.,

V =
1

2
k1(θ1 − θ3)

2 +
1

2
k1(θ2 − θ4)

2 +
1

2
k2(θ3 − θ5)

2 +
1

2
k1(θ4 − θ6)

2 (6)

The Rayleigh dissipation function associated with the system stems from the viscous damping
present, which is

∆ =
1

2
c1(θ̇1 − θ̇3)

2 +
1

2
c1(θ̇2 − θ̇4)

2 +
1

2
c2(θ̇3 − θ̇5)

2 +
1

2
c2(θ̇4 − θ̇6)

2 +
1

2
c3θ̇

2
7 +

1

2
c3θ̇

2
8 (7)

We have a system with six degrees with freedom, θi, for i = 3, 4,. . . , 8, denoting the generalized
coordinates. Now, integrating the input-output relation of eq.(1), with respect to time, under the
assumption that at initial conditions (i.e., at t = 0) all terms vanish, we notice that, out of the six
generalized coordinates, only four are independent. Hence, the system has, in fact, four degrees of
freedom. Under these conditions, we substitute eqs.(5)–(7) into eq.(2), the Lagrange equation then
leading to

Mq̈ + ∆q̇ + Kq = f(t) (8)

where q is the four-dimensional vector of generalized coordinates and f(t) is the four-dimensional
vector of input generalized force, namely,

q =


θ3

θ4

θ5

θ6

 , f(t) =


c1θ̇1 + k1θ1

c1θ̇2 + k1θ2

0
0
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Furthermore, M, ∆ and K are the 4×4 mass, damping and stiffness matrices, respectively, namely,

M =


0 0 0 0
0 0 0 0
0 0 J2 +H3/4 + J3N

2/4M2 H3/4− J3N
2/4M2

0 0 H3/4− J3N
2/4M2 J2 +H3/4 + J3N

2/4M2



∆ =


c1 + c2 0 −c2 0

0 c1 + c2 0 −c2
−c2 0 c2 + c3/4 + c3N

2/4M2 c3/4− c3N2/4M2

0 −c2 c3/4− c3N2/4M2 c2 + c3/4 + c3N
2/4M2



K =


k1 + k2 0 −k2 0

0 k1 + k2 0 −k2

−k2 0 k2 0
0 −k2 0 k2


3.3 State-Space Representation

A state-space representation as a multiple-input-multiple-output (MIMO) system is derived below,
its transfer functions being derived in the sequel. In order to represent the mathematical model in
state-space, we first reduce the model given by eq.(8) to a two-dimensional second-order definite
system coupled with a two-dimensional first-order system. To this end, matrices and vectors are
partitioned as,

M =

[
O O
O MII

]
, ∆ =

[
CI CI,II

CT
I,II CII

]
, K =

[
KI KI,II

KT
I,II KII

]

q =

[
qI

qII

]
, qI =

[
θ3

θ4

]
, qII =

[
θ5

θ6

]
f(t) =

[
f I

0

]
, f I = Fu, F =

[
K1,in C1,in

]
K1,in =

[
k1 0
0 k1

]
, C1,in = c11, u =

[
θin

θ̇in

]
, θin =

[
θ1

θ2

]
where we define 0 as the two-dimensional zero vector, O as the 2 × 2 zero matrix, 1 as the 2 × 2
identity matrix, and all blocks being of 2× 2. Then, the mathematical model is rewritten using the
above partitioned matrices and vectors.

Regarding the system output, we have torques τ1 and τ2 as measured quantities. Analyzing the
equilibrium of the free-body diagrams of couplings 1 and 3 shown in Fig. 3, we obtain,

τ1 = k1(θ3 − θ1) + c1(θ̇3 − θ̇1) (9a)

τ2 = k1(θ4 − θ2) + c1(θ̇4 − θ̇2) (9b)
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Thus, the output torques can be expressed as,

γ =

[
τ1
τ2

]
= K1,inqI + C1,inq̇I − f I (10)

Proceeding with the state-space representation, the state-variable vector x and the output-variable
vector y are

x = [qI , qII ,vII ]T y = [qI ,θin,γ]T

where y includes only measured variables. Further, the state-space equations of the PRW testbed
become

ẋ = Ax+ Bu (11a)
y = Cx+ Du (11b)

where

A =

 A11 A12 A13

O O 1
A31 A32 A33

 ,B =

 B11 B12

O O
B31 B32

 ,C =

 1 O O
O O O

C31 C32 C33

 ,D =

 O O
1 O

D31 D32


with

A11 = C−1
I KI

A12 = C−1
I KI,II

A13 = C−1
I CI,II

A31 = −M−1
II (−CT

I,IIC
−1
I KI + KT

I,II)

A32 = −M−1
II (−CT

I,IIC
−1
I KI,II + KII)

A33 = −M−1
II (−CT

I,IIC
−1
I CI,II + CII)

B11 = C−1
I K1,in

B12 = C−1
I C1,in

B31 = −M−1
II CT

I,IIC
−1
I K1,in

B32 = −M−1
II CT

I,IIC
−1
I C1,in

C31 = K1,in −C1,inC−1
I KI

C32 = −C1,inC−1
I KI,II

C33 = −C1,inC−1
I CI,II

D31 = −C1,inC−1
I K1,in −K1,in

D32 = −C1,inC−1
I C1,in −C1,in

3.4 Derivation of the Transfer Matrix

The transfer matrix is a compact representation of the differential equation describing the influence
of the input variables onto the output variables, these variables being expressed as polynomial
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Table 1: Simulation Parameters

Parameter Value
J2 3.8681291× 10−3kgm2

J3 1.2750004× 10−2kgm2

H3 4.2363841× 10−2kgm2

c1 7.83× 10−3Nms/deg
c2 8.35× 10−3Nms/deg
c3 6.66× 10−3Nms/deg
k1 2.11Nm/deg
k2 0.76Nm/deg

functions of s, after Laplace-transforming the input-output differential equation [9]. We take the
Laplace transforms of eqs.(11a) and (11b) to obtain

sX(s) = AX(s) + BU(s) (12a)
Y(s) = CX(s) + DU(s) (12b)

Thus, the transfer function G(s) is obtained as

G(s) ≡ ∂Y(s)

∂U(s)
= C(s1−A)−1B + D (13)

4 SIMULATION AND DYNAMICS ANALYSIS

In order to conduct simulation and analysis of the PRW tesbed, the inertial properties of the SECT
and all system parameters are required. The mass and the moment of inertia of all composite bod-
ies among the SECT are calculated by means of the Model Analysis tool of Pro/E. The physical
system parameters of the model, namely, the stiffness and damping coefficients, will be identified
and estimated according to the observed input-output experimental data. Before starting the exper-
iment, these parameters are assumed based on experience, from data taken from a previous similar
testbed [10]. All parameters used in the simulation system are recorded in Table. 1.

The simulation system was set up in MATLAB/Simulink according to the proposed mathemat-
ical model described in eq.(8). Here, one set of harmonic signals, namely, θ̇1 = sin(10π) and
θ̇2 = sin(10π + π) = − sin(10π), was chosen as the excitation of the simulation system. The
simulation results, illustrated in Fig. 4, show that the pitching velocity θ̇7 remains zero while two
input angular velocities, θ̇1 and θ̇2, have the same speed and different directions. The PRW thus
degenerates into a single-degree-of-freedom transmission.

In order to gain insight into the system, we simply perform the Laplace-transform of the model
of eq.(8) by letting

f(t) = Fuuu
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Figure 4: The simulation results under identical motor velocities with opposite signs

with

Fu =


1 0
0 1
0 0
0 0

 , uu =

[
c1θ̇1 + k1θ1

c1θ̇2 + k1θ2

]

thereby, obtaining
(s2M + sC + K)Q(s) = FuUu(s) (14)

where
Q(s) = L{q(t)}

Let

Uu(s) = (c1s+ k1)Θu(s), Θu(s) =

[
Θ1(s)
Θ2(s)

]
Rearranging terms in eq.(14), to obtain the frequency response of the model, yields

H(s) =
∂Q(s)

∂Θu(s)
= (s2M + sC + K)−1Fu(c1s+ k1) (15)

The transfer function turns out to be a 4×2 matrix, a total of eight Bode plots thus being obtained.
All eight Bode plots are illustrated in Fig. 5, which shows that Figs. 5(a), (b), (c) and (d) are
symmetric with Figs. 5(f), (e), (h) and (g), respectively. Notice also that Figs. 5(b), (d), (e)
and (g) show a rise in the asymptote, which happens because of the presence of a high pass filter.
However, after reaching a pole, the asymptote undergoes a drop of −40dB/decade. Moreover, in
Figs. 5(c) and (h), we observe that there is a drop of −40dB/decade, which produces a net fall of
−20dB/decade.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Bode Plots of (a) H11(s); (b) H21(s); (c) H31(s); (d) H41(s); (e) H12(s); (f) H22(s);
(g) H32(s); (h) H42(s) 2009 CCToMM M3 Symposium 11



5 CONCLUSIONS

The testbed for a novel mechanical transmission, based on a Spherical Epicyclic Cam Train (SECT),
was introduced. This gearless cam-roller transmission is to be used as a robotic wrist to produce
pitch and roll, hence the name Pitch-Roll Wrist (PRW). The iconic model of the testbed was pro-
duced to develop its mathematical model by means of a Lagrangian approach. Furthermore, the
state-space model and the transfer matrix of the testbed system were derived. Finally, the simula-
tion system was set up in MATLAB/Simulink by assuming the values of some system parameters
from data available from a similar testbed. Bode plots of the system frequency response were thus
obtained. Not surprisingly, the Bode plots reflect the symmetry of the system, which is apparent in
Figs. 2 and 3.
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