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Abstract
A novel architecture of planar closed-loop cable-driven parallel mechanism is introduced in this
paper. In this architecture, instead of being wound on spools, the cables form closed loops attached
to the end-effector and whose motion is controlled by sliders. By eliminating the spools, it is
expected that the new mechanisms will lead to a better accuracy than conventional cable-driven
parallel mechanisms. This paper presents the inverse kinematics, the Jacobian matrices and the
static equilibrium equations for the new architecture. Using the Jacobian matrices, the singularities
of the mechanism are also analyzed. Also, based on the static equation, the available wrench set is
determined. It is pointed out that the trajectory of the end-point of a given cable loop is a portion of
ellipse. The intersection of the ellipses provides the assembly modes. There can be more than one
intersection point of the ellipses at a given position of the sliders. This geometeric characteristic is
analyzed at the end of the paper.
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Mécanisme parallèle plan entraı̂né par des boucles de câbles

Résumé
Une nouvelle architecture de mécanisme parallèle plan entraı̂né par câbles est proposée dans cet ar-
ticle. Dans cette architecture, les câbles forment des boucles fermées dont le mouvement est assuré
par des glissières plutôt que de s’enrouler sur des tambours comme dans une architecture conven-
tionnelle. En éliminant les enrouleurs, on s’attend à ce que la précision du mécanisme puisse
être améliorée. Cet article présente la solution au problème géométrique inverse, la dérivation
des matrices jacobiennes et l’obtention des équations d’équilibre statique. Les singularités sont
aussi analysées et l’ensemble des torseurs disponibles à la plate-forme est déterminé. L’analyse
du mécanisme révèle que la trajectoire du point extrême d’une boucle de câble décrit une por-
tion d’ellipse et que les intersections des ellipses associées aux différentes boucles donnent les
modes d’assemblage. Le nombre de points d’intersection peut être plus grand que un et cette car-
actéristique du mécanisme est analysée.

Mots-clé: mécanisme parallèle entraı̂né par câbles, boucle cinématique, statique, singularités.
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1 INTRODUCTION

Cable-driven parallel mechanisms are parallel mechanisms in which a moving platform is driven
by a number of cables. Such mechanisms have been studied in the recent literature because of their
obvious advantages in terms of small moving mass and large range of motion. Pioneer designs of
cable-driven parallel mechanisms include the NIST Robocrane [1], the Falcon high-speed parallel
manipulator [2] and the Skycam [3].

Several challenging problems arise in the analysis and design of cable-driven parallel mecha-
nisms such as the determination of the workspace, the determination of the wrench capabilities and
the computation of the optimal force distribution (see for instance [4, 5, 6, 7]). Indeed, because
cables can only work in tension, cable-driven parallel mechanisms are often redundantly actuated,
thereby leading to infinitely many solutions to the inverse statics or dynamics problem.

Several practical issues also need to be considered in the design and control of cable-driven
parallel mechanisms. In a typical cable-driven parallel mechanism, cables are wound on actuated
spools and the extension of the cables is determined using an encoder mounted on the spool. This
approach leads to inaccuracies because the ratio between the rotation of the spool and the extension
of the cable is generally not constant and depends on how much cable is wound on the spool. Also,
it was shown that the tension in the cable at the time of winding may also affect the winding and
hence the above mentioned ratio [9].

Given the above limitations, it is proposed here to build a planar cable-driven parallel mecha-
nism based on closed cable loops. By replacing the cable and spool arrangement with closed cable
loops, the difficulties of measuring the extention of the cables are alleviated. Also, the stability of
the platform may be improved by increasing the number of cables attached to the platform. This
paper presents the application of this concept to a planar two-degree-of-freedom parallel mecha-
nism. The mechanism is first introduced and its mechanical design is described. Then the inverse
kinematic problem is solved and the velocity equations are derived. Two Jacobian matrices are
obtained and a singularity analysis is then performed. A static analysis is presented, based on the
principle of virtual work and the wrench capabilities of the mechanism are discussed. Finally, a
geometric analysis is presented in order to support the results of the preceding sections.

2 DESCRIPTION OF THE MECHANISM

The structure of a 3-cable 2-dof cable driven parallel mechanism is shown in Fig.(1). There are
three cable loops in this mechanism. Each cable is controlled by a slider, passes around two fixed
pulleys and then attaches to the end-effector. The position of the end-effector can be changed by
controlling the motion of the sliders.

The fixed pulleys are represented by Aij , i = 1, . . . , 3, j = 1, 2, the sliders are represented
by Bi, i = 1, . . . , 3. The location of point Aij , i = 1, . . . , 3, j = 1, 2 is known and expressed
as rAij = [xAij, yAij]

T , i = 1, . . . , 3, j = 1, 2. The respective length of loops PA11B1A12P ,
PA21B2A22P and PA31B3A32P is Li, i = 1, . . . , 3. The direction of motion of the sliders is
noted si = [xsi, ysi]

T , sTi si = 1, i = 1, . . . , 3 and the sliding guides pass through points Ri, rRi =
[xRi, yRi]

T , i = 1, . . . , 3. Then, the position of point Bi, noted rBi = [xBi, yBi]
T , i = 1, . . . , 3 can

be expressed as
rBi = rRi + ρisi, i = 1, . . . , 3 (1)
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Figure 1: Schematic representation of a 3-cable 2-dof cable driven parallel mechanism.

where ρi represents the extension of the ith slider, i.e., the ith joint coordinate.

3 INVERSE KINEMATICS

The solution of the inverse kinematic problem consists in determining the actuator coordinates ρi
for a given position of the end-effector P , given as rp[xp, yp]

T . From the geometry of the ith cable
loop, the total loop length, Li, can be written as

| rp − rAi1 | + | rp − rAi2 | + | rAi1 − rBi | + | rAi2 − rBi |= Li, i = 1, . . . , 3. (2)

Expanding eq.(2), we obtain

C1iρ
2
i + C2iρi + C3i = 0, i = 1, . . . , 3 (3)

where

li = Li− | rp − rAi1 | − | rp − rAi2 |
C1i = 4

[
l2i −

(
rTAi2si − rTAi1si

)2]
C2i = 4

[
2l2i
(
rTRisi − rTAi1si

)
− 4

(
rTAi2si − rTAi1si

) (
l2i + rTAi1rAi1 − rTAi2rAi2 + 2rTAi2rRi − 2rTAi1rRi

)]
C3i = 4l2i

(
rTAi1rAi1 + rTRirRi − 2rTAi1rRi

)
− l4i −

(
rTAi1rAi1 − rTAi2rAi2 + 2rTAi2rRi − 2rTAi1rRi

)2
−2l2i

(
rTAi1rAi1 − rTAi2rAi2 + 2rTAi2rRi − 2rTAi1rRi

)
Therefore, the inverse kinematic problem can be solved by computing the roots of eq.(3). It can
be observed that two solutions are obtained for each cable loop which leads to 8 solutions for the
complete mechanism
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4 VELOCITY EQUATIONS AND JACOBIAN MATRICES

Differentiating eq.(2) with respect to time and collecting terms, we can get (u11 + u12)
T

(u21 + u22)
T

(u31 + u32)
T

[ ẋp
ẏp

]
=

 (v11 + v12)
T s1 0 0

0 (v21 + v22)
T s2 0

0 0 (v31 + v32)
T s3

 ρ̇1

ρ̇2

ρ̇3


(4)

where

uij =
rp − rAij
| rp − rAij |

, i = 1, . . . , 3, j = 1, 2

vij =
rAij − rBi
| rAij − rBi |

, i = 1, . . . , 3, j = 1, 2.

In other words, eq.(4) can be writen as:

Jxẋ = Jρq̇ (5)

where the two Jacobian matrices given in eq.(4) are noted Jx and Jρ.

5 SINGULARITY ANALYSIS

The configurations of the mechanism that lead to det(Jρ) = 0 or det(JTxJx) = 0 are singular
configurations.

For det(Jρ) = 0, we get:

sTi (vi1 + vi2) = 0, i = 1, . . . , 3. (6)

From eq.(6), we can find the corresponding value of ρi, namely

ρi = sTi mi (7)

where

mi =


(xAi1 − xRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |

+
(xAi2 − xRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |

(yAi1 − yRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |

+
(yAi2 − yRi) | rAi2 − rBi |
| rAi1 − rBi | + | rAi2 − rBi |


By inspection of the above equations, it is clear that if the direction of si is perpendicular to the
line Ai1Ai2, i.e., si ⊥ (vi1 + vi2) such singularity points are easily avoided.

For det(JTxJx) = 0, it is more difficult to obtain a singularity equation. However, by inspection
of eq.(4) it is clear that the singularities occur when eqs.(8), (9) and (10) are all satisfied, i.e.,

det

(
(u11 + u12)

T

(u21 + u22)
T

)
= 0 (8)

det

(
(u11 + u12)

T

(u31 + u32)
T

)
= 0 (9)
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det

(
(u21 + u22)

T

(u31 + u32)
T

)
= 0. (10)

Fig.(2) shows an example of the loci associated with eqs.(8), (9) and (10). The solid curve
is the solution of each equation. We can see that the three curves do not have a common inter-
section point. Actually, in practice, it is easy to design the mechanism such that the singularities
corresponding to det(JTxJx) = 0 do not exist.
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Figure 2: Loci corresponding to eqs.(8), (9) and (10).

6 STATIC ANALYSIS
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Figure 3: Actuation and platform forces for the 3-cable 2-dof cable driven parallel mechanism.

The forces acting on the 3-cable 2-dof cable driven parallel mechanism are shown in fig.(3).
The actuator forces are fBi, i = 1, . . . , 3. According to the kinematic model mentioned earlier,
the directions of the actuating forces are si, i = 1, . . . , 3. The external force at the end-point is
fp = [fx, fy]

T . As a whole system, the mechanism should be balanced with fBi, i = 1, . . . , 3 and
fp. Using the principle of virtual work, we can get

fTB1δrB1 + fTB2δrB2 + fTB3δrB3 + fTp δrp = 0 (11)
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Substituting eq.(1) into eq.(11), one then obtains

fTB1s1δρ1 + fTB2s2δρ2 + fTB3s3δρ3 + fpδrp = 0. (12)

Eq.(12) can be written as
−fTBδρ = fTp δrp (13)

where
fB =

[
fTB1s1 fTB2s2 fTB3s3

]T
, δρ =

[
δρ1 δρ2 δρ3

]T
in which δρ and δrp are respectively virtual changes of the positions of the sliders and the virtual
generalized displacement of the end-effector. From eq.(4), we have

δρ = J−1
ρ Jxδrp

and substituting into eq.(13), we get the static equation:

fp = −JTxJ
−T
ρ fB. (14)

7 WRENCH CAPABILITIES OF THE MECHANISM

The static equation expressing the relationship between the actuator forces and the external force
applied at the end-effector can be rewritten as

WfB = fp (15)

where
W = −JTxJ

−T
ρ .

Assuming that the minimun slider force and the maximun slider force are known, then the
available wrench set at the platform can be expressed as

A =

{
fp ∈ R2 | fp =

3∑
i=1

βiwi + WfBmin, 0 ≤ βi ≤ (fBmax − fBmin)

}
. (16)

where wi is the ith column of matrix Wi

For instance, if the minimum slider force is fBmin = (1, 1, 1)T , the maximum slider force is
fBmax = (10, 10, 10)T , and if the geometry of the mechanism is such that the pulleys are located
by pairs at points (−6, 0), (6, 0), (0, 6

√
3), then the available wrenches are easily determined. They

are the convex hull of the extreme wrenches, as given in eq.(16). Two examples are illustrated for
the above parameters in figs. 4 and 5.
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8 GEOMETRIC ANALYSIS

Roughly speaking, the end point of this mechanism can reach any point in the polygon formed by
vertices A11A12A21A22A31A32A11. However, there are some points that can cause the cable loops
to become loose. Indeed, for a given value of ρi, for one cable loop, the trajectory of the end-point
is a portion of ellipse. The intersection of the three ellipses gives the position of the end point.
Depending on how the ellipses intersect, some of the cables may become slack. This is illustrated
in fig.6.

For a given point of the workspace, using the equations of the ellipses we can find out whether
the cables will become loose or not. However, it is much more meaningful to determine the regions
in which the cables can become loose using an approach based on geometry.

Since in a given loop the cable can move freely around the pulleys (all pulleys are free to rotate),
the tension in the cable must be the same everywhere (if friction in the pulleys is neglected).
Therefore, the tension in each of the two cable ends of a given loop attached to the platform must
be the same.

Considering the geometric construction of fig.(7), the following vectors are defined:

u1 = u11 + u12

u2 = u21 + u22

u3 = u31 + u32.
(17)
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Figure 6: Intersection of the three ellipses associated with the cable loops.
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Figure 7: Definition of the direction of the force vectors.

Clearly, the force applied to the platform by the ith cable loop must be in the direction of vector
ui. To avoid a situation in which one of the cables becomes loose, vectors ui, i = 1, ..., 3 must be in
a force-closed configuration. The boundary of this region is reached when two of the ui, i = 1, ..., 3
are aligned. Therefore, the equation describing this boundary is the combination of eq.(8), eq.(9)
and eq.(10).

The solution of eq.(8), eq.(9) and eq.(10) leads to two possible situations. One situation is that
one of the rows is zero, the other situation is that the direction of each row is along the same line.
The segment between the pulleys of lineA11A12, A21A22, A31A32 corresponds to the first situation.
The second situation is the solution of eq.(18), for eq.(8) i = 1, j = 2, for eq.(9) i = 1, j = 3, and
for eq.(10) i = 2, j = 3.

√
Ai2
√
Aj2 [(yai1 − yaj1)xp + (xaj1 − xai1)yp + xai1yaj1 − xaj1yai1]

+
√
Ai2
√
Aj1 [(yai1 − yaj2)xp + (xaj2 − xai1)yp + xai1yaj2 − xaj2yai1]

+
√
Ai1
√
Aj2 [(yai2 − yaj1)xp + (xaj1 − xai2)yp + xai2yaj1 − xaj1yai2]

+
√
Ai1
√
Aj1 [(yai2 − yaj2)xp + (xaj2 − xai2)yp + xai2yaj2 − xaj2yai2] = 0

(18)

where
Aik = (xp − xaik)2 + (yp − yaik)2 k = 1, 2
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One example of the boundary of the force-closed configurations is shown Fig.(8).
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Figure 8: Boundary of the force-closed region for the 3-cable 2-dof cable driven parallel mecha-
nism.

9 CONCLUSIONS

This paper presented a 3-cable 2-DOF closed-loop cable-driven parallel mechanism. The cables
form loops that are free to move around a set of free pulleys. Each cable loop is attached to the
end-effector. The position of the end-effector is controlled using sliders that displace one of the
pulleys along an axis. This architecture has the advantage of eliminating the need to wind cables
around a spool.

The inverse kinematics, the Jacobian matrices and the static equations were determined. The
singularities of the mechanism have been analyzed based on the two Jacobian matrices. Also, using
the method presented in [7], the set of available wrenches was obtained from the static equations.

Finally, a special geometric characteristic of the novel architecture was studied. It was observed
that, for a given position of the ith slider, the trajectory of the end-point of the ith cable loop is
a portion of ellipse. The intersection of the ellipses gives the position of the end point. From
geometric reasoning, the boundary of the force-closed workspace was determined.
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