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Abstract
This paper presents an obstacle avoidance method for a discretely-actuated planar manipulator
with a large number of serially connected modules. The method uses a combination of workspace
density functions and obstacle density maps to solve the inverse kinematics. Module states are
determined sequentially, starting at the base of the manipulator up to the end-effector. At each
iteration, the workspace density at the target location is computed for each module state, these
values are then scaled according to the frequency of perceived obstacles around the location of the
current module, and the module state with the largest scaled density is selected. The advantage of
the method is that the environmental information generated by range sensors on the manipulator
surface could be used directly by the algorithm, thus avoiding the geometrical modelling of obsta-
cles and the computation of the nearest point distance between the manipulator and the obstacles.
This paper provides a description of the proposed algorithm and presents the simulation results of
a seventeen module planar manipulator operating in an obstacle field.
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1 INTRODUCTION

Hyper-redundant manipulators are highly dexterous robotic devices typically composed of numer-
ous serially connected modules and actuators. The large number of degrees of freedom allows
the manipulator to avoid obstacles and to navigate through narrow passages. The high mobility of
redundant manipulators increases the complexity of both the inverse kinematics and the obstacle
avoidance problem. The challenge is determining a suitable solution in a reasonable amount of
time.

There are various different approaches to both these problems in the literature. For only sev-
eral degrees of freedom, resolved-motion rate inverse kinematics methods based on the pseudoin-
verse were proposed under various formulations [1]–[4]. In one way or another, these solutions
yield a minimum norm solution to the primary motion task and a homogeneous solution used for
secondary tasks. Obstacle avoidance strategies based on the Jacobian matrix generally involved
maximizing the distance between the manipulator link closest to the obstacle vertex [5] [6].

The artificial potential field method initially developed for mobile robots [7] [8] was adapted to
redundant manipulators in [9] [10]. This method is based on a field of forces interacting with the
manipulator structure. The target coordinate acts as an attractive pole to the end-effector and ob-
stacles act as repulsive surfaces to the manipulator. A typical disadvantage of applying this method
to robotic manipulators is that obstacles must be modeled using analytical equations. Modelling
the obstacles as mesh grids in which each mesh grid points exert a repulsive force to the manipu-
lator structure was proposed to overcome this problem [11]. It is to be noted that many of these
strategies treat obstacles as convex polyhedrons, spheres or ellipsoids to avoid local minimum solu-
tions [15]-[17]. Although these methods are compact and concise, they all rely on the Jacobian and
its pseudoinverse which has demonstrated to be computationally inefficient for manipulators with
a large number of degrees of freedom. In either case a large number of constraint tasks or potential
functions must be optimized to solve for the redundant modules or a large number obstacles.

The backbone curve method was developed to limit the number of parameter in the optimization
problem. The inverse kinematics is reduced to finding the mode shape functions describing a
continuous or piecewise continuous curve fixed to the manipulator structure or backbone [12] [13].
The application of this method involves fixing the number of mode shape functions according to
the number of obstacles in the workspace. The shape functions are sequentially separated into
“free” sections and obstacle avoiding sections which traverse “virtual tunnels” derived from the
obstacle field [14]. The generation of the tunnels is non-intuitive for complex obstacle fields and
not easily adaptable to time-varying obstacle fields.

Workspace density functions approximate the number of forward kinematic solutions of discre-
tely-actuated hyper-redundant manipulators in the workspace by dividing the workspace into small
volume elements and recording the number of poses in each element [18]. Workspace density
functions describe how accurately a position and orientation can be reached by the end-effector.
These functions are used in conjunction with a breadth-first search algorithm to quickly solve the
inverse kinematics problem [19]. The method works sequentially from the base of the manipulator
to the end-effector module. For each module, the state resulting in the highest density at the end-
effector coordinate is selected as the optimal state and used in the computation of the subsequent
module states in the manipulator chain.

2009 CCToMM M3 Symposium 2



HA

HB

Ht

FA

FB

Figure 1: Concatenation of two homogeneous transformations

In light of the current interest in mobile robots, several heuristic methods have been proposed
that are analogous to the workspace density based method. The vector field histogram method
uses a two-dimensional Cartesian grid generated from range sensors aboard a mobile robot for the
representation of the obstacles [24] [25]. From the Cartesian grid, a polar histogram function
quantifying the obstacle density around the robot is generated, and the direction with the lowest
obstacle density is chosen.

In this paper we present a variation on the breadth-first search inverse kinematics algorithm to
included an obstacle avoidance strategy. The approach builds on the previous research by apply-
ing the information contained in the two-dimensional grid representing the obstacle field to the
densities computed from the workspace density functions. For each module state, the density at
the end-effector coordinate is scaled with an obstacle density factor representing the obstacle den-
sity around the current module. The following sections describe the generation of the workspace
density functions, the breadth-first search inverse kinematics algorithm, and the obstacle avoid-
ance strategy. Simulation results are presented at the end of the paper using a manipulator with
seventeen modules operating in an obstacle field consisting of uniformly-distributed circles.

2 WORKSPACE DENSITY FUNCTIONS

Workspace density functions quantify a manipulator’s ability to reach a given target coordinate.
The density at each location in Euclidian space reflects the number of reachable frames at that
location [20]. The density function ρ of a discretely-actuated module is obtained by dividing the
workspace into small elements and recording the number of end-effector frames in each element.
The generation of the density function is irrespective of the module structure or actuation method;
modules may be composed of parallel platforms, single actuator revolute or prismatic joints, or
any combination of the above. The density of a serial manipulator of any length can be obtained
by the sequential convolution of the density functions of each of its modules [21].

Referring to Figure 1, FA and FB are moving frames attached to the distal end of two modules
described by the homogeneous transformations HA and HB respectively. The transformation HA

describes the position and orientation of FA with respect to the fixed reference frame and HB

describes the position and orientation of FB with respect to FA. The coordinates of FB with
respect to the fixed reference frame can then be described by Ht = HAHB. The homogeneous
transformation HB can then also be written as:
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HB = H−1
A Ht (1)

The density function ρ(Ht) of FB with respect to the fixed frame can be obtained from the
convolution of the density functions ρA(HA) and ρB(HB) of the two modules [18] [21].

ρ(Ht) = (ρA ∗ ρB)(Ht) =

∫
SE(D)

ρA(HA)ρB(H−1
A Ht)dµ(HA) (2)

where SE(D) denotes the group of rigid body motions of N -dimensional space and dµ(HA) is
the integration measure on the motion group. In the case of a planar manipulator N = 2, and
dµ = dxdydθ . Given the transformations HA and Ht

HA =

 cosα sinα ξ
− sinα cosα η

0 0 1

 and Ht =

 cos θ sin θ x
− sin θ cos θ y

0 0 1

 (3)

the convolution (2) can be written as

(ρA ∗ ρB)(x, y, θ) =∫∫∫
x,y,θ

ρA(ξ, η, α)ρB

 (x− ξ) cosα + (y − η) sinα,
−(x− ξ) sinα + (y − η) cosα,
θ − α

 dxdydθ (4)

In the numerical simulations, the workspace density function are approximated by a piece-wise
constant histograms in the form of Figure 2a, and the convolution (4) can be approximated by a
Riemann-Stieltjes sum [18].

(ρA ∗ ρB)(x, y, θ) '
L∑
l=1

M∑
m=1

N∑
n=1

ρA(ξl, ηm, αn)ρB

 (x− ξl) cosα + (y − ηm) sinα,
−(x− ξl) sinα + (y − ηm) cosα,

(θ − αn)mod2π

∆x∆y∆θ (5)

whereL,M , andN represent the size of the workspace density function histogram. The workspace
density function of a manipulator with P modules can be obtained from the sequential convolution
of the density functions of each module in the manipulator, from the base module ρ0,1 to the end-
effector module ρP−1,P .

ρ0,P (x, y, θ) = (ρ0,1 ∗ ρ1,2 ∗ ... ∗ ρP−1,P )(x, y, θ) (6)

The convolution (6) becomes computationally unfeasible for manipulators with many modules
since the density function size increases with the number of modules and the size of the workspace.
Several methods have been developed to overcome this problem such as the conversion of the
density function to a Fourier transform [21] and the use of a diffusion-type equation [22].
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a) Manipulator workspace density b) Obstacle density map

Figure 2: Workspace density functions

3 BREADTH-FIRST SEARCH INVERSE KINEMATICS

The breadth-first search inverse kinematics algorithm involves determining and fixing the state of
each module sequentially, starting at the base module of the manipulator, while maximizing the
density of the remaining modules at the desired coordinates for each step [18]. Given the desired
target coordinate Hd = f(xd, yd, θd), the density

ρ1,P ((HS
1 )−1Hd) (7)

is computed for each state S of the first module, where HS
1 is the transformation of one state of the

first module. The configuration HC
1 = HS

1 which maximizes ρ1,P is selected and the state of the
second module is found by computing

ρ2,P ((HC
1 H

S
2 )−1Hd) (8)

for each state S of the second module, where the transformation HC
1 is the optimal state of the

first module and HS
2 is the transformation of one state of the second module. The configuration

HC
2 = HS

2 which results in the highest density ρ2,P is selected and the process is repeated until the
end-effector module is reached. Using this method, the computation time of the inverse kinematics
is proportional to the number of modules in the manipulator.

4 OBSTACLE AVOIDANCE USING WORKSPACE DENSITY FUNCTIONS

Obstacles in the workspace can easily be represented by probability distribution maps based on data
is generated from range sensors such as the ultrasonic or infrared sensors used by mobile robots.
Each cell in the obstacle density map quantifies the confidence in the existence of an obstacle at
that location. In the case of a planar manipulator or mobile robot operating on a plane surface,
the obstacle density map ρO would take the form of Figure 2b. There several different methods
for producing these maps in the literature such as the histogram grid or certainty grid algorithms
[7] [26]. In the case of the present analysis, simulated obstacle density maps are used. Shown in
Figure 3 is an example of a simulated obstacle. The cells containing an obstacle have a value of
one and cells in free areas have a value of zero.
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Figure 3: Obstacle density map
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Figure 4: Active cells of the obstacle density map for one module state
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At each iteration, the density of the remaining number of module states at the target coordinates
is computed using the method described above. The density at each state is then scaled by an
obstacle density factor representing the density of obstacles located around the current module
state and a region up to a distance of two additional modules away. For one module state, the
searched area is shown in Figure 4. Three sectors denoted by the letters A, B, and C represent
three areas of high, medium, and low concern respectively. The area A of high concern is located
at the current module state whereas the areas of low concern B, and C are located at along the
current module axis at a distance of one and two additional modules.

Ten points along the length of each module are selected in the obstacle avoidance algorithm.
The number of points selected reflects ratio between the length of the module (the width is assumed
to be negligeable) and the size of the discretization of the workspace. The location of these points
on the obstacle density map determines the values ci,j of the cells in obstacle density map. The
obstacle strength kSo at the current module state is obtained from the sum of the cells ci,j of each
sector.

kSo = p1

∑
A

cAi,j + p2

∑
B

cBi,j + p3

∑
C

cCi,j (9)

The values of the weights pi are determined such that effect of obstacles diminish as the distance
from the current module increases. A large magnitude of p1 ensures that the inverse of the obstacle
strength, given by the obstacle density factor KS

o , is reduced to zero in the presence of obstacles
near the current module state region A (as seen in Figure 4).

KS
o =

{
1/kSo if kSo 6= 0
1 if kSo = 0

(10)

The density value obtained from the breadth-first search inverse kinematics algorithm is then
scaled by the obstacle density factor. For each state of the current module, and the configuration
of the ith module is selected from

max{KS
o · (ρi,P ((HC

1 H
C
2 . . . H

S
i )−1Hd)} (11)

This process is repeated for each module in the manipulator until the end-effector module is
reached.

5 NUMERICAL SIMULATIONS

Numerical simulations were performed on a planar hyper-redundant manipulator with seventeen
unit-length modules. Each discretely-actuated module is capable of reaching five equally spaced
states, as shown in Figure 5a. In Figure 5b, the search patterns corresponding to each of the five
states are superimposed to illustrate the searched area of one module. The discretization of the
manipulator workspace density functions and the obstacle density map were chosen to be identical
and equal to ∆x = 0.1 and ∆y = 0.1 of the module length to facilitate the identification of
the active cells in the obstacle density map, and ∆θ = 6◦ was used to obtain a good angular
resolution for the module states. It is assumed that the range sensors are strategically located
on the manipulator structure such that the obstacle density map can be generated with reasonable
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Figure 5: Active cell search of one module

certainty. In this paper, the obstacle density map is generated by a Matlab and used directly with the
inverse kinematics algorithm. The obstacles consist of uniformly-spaced circles with a radius equal
to the length of one module, as shown in Figure 6. The performance of the proposed method was
evaluated by computing the inverse kinematics of over eight thousand target coordinates, bounded
by

0 ≤ x ≤ 18 0 ≤ y ≤ 12 − π ≤ θ ≤ π

Since the states of the discretely-actuated revolute joint of Figure 5 are symmetric about the
x-axis, the manipulator forward kinematics are also symmetric about the x-axis. As a result, the
target coordinates that lie on the negative y-axis were eliminated to limit the redundancy of the
data. The computation time, mean end-effector error, and percent convergence were recorded for
each simulation. The mean end-effector error is given by:

e =
√

(xd − x)2 + (yd − y)2 + L2(θd − θ)2 (12)

where [xd, yd, θd] is the target end-effector coordinate and L is a length scale used to homogenize
the positional and orientational units [23]. In the actual implementation, the value L2 = 0.1 was
used. Other quantities of L may be used but this value gave a good balance between position and
orientation errors. The magnitude of the end-effector error is given in terms of the unit length of
one modules. The values of the weights in (9) were set to (p1, p2, p3) = (1010, 101, 100). The high

Table 1: Numerical simulation results
Algorithm Convergence Mean computation Mean end-

[%] time [s] effector error
ABC 32.1 0.0936 0.167
AB 32.8 0.0933 0.168
A 33.8 0.0928 0.182
Breadth-first search in free-space 39.0 0.0823 0.088
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Figure 6: Manipulator configurations in an obstacle field

value of p1 ensures that any obstacles at the current module state location would reduce the total
density (11) to zero.

Three variations on the above algorithm were tested using Matlab on a Pentium IV 3.00GHz
PC, and the results are given in Table 1. The algorithms A, AB, and ABC represent the active cells
used to perform the obstacle avoidance. For example, in algorithm A, only the cells of region A in
Figure 4 are searched for possible obstacles. As a comparison, the last row of Table 1 represents
the results obtained from the breadth-first search algorithm operating in an obstacle-free workspace
using the same target end-effector coordinates. It is to be noted that, although the convergence of
the three obstacle avoidance algorithms is less than breadth-first search method, many end-effector
target coordinates located in the vicinity of obstacles were unreachable due to the required target
orientations. The additional computation time required to evaluate the active cells and the obstacle
density factor is approximately 10ms, and although the mean end-effector error is higher for the
obstacle avoidance, it remains a fraction of the manipulator length. There is a slight difference
between the capabilities of the three obstacle avoidance algorithm variations. Although the cause of
these variations remains to be determined, the actual difference in performance may become more
evident as a greater number of obstacle scenarios are tested. Figure 6 illustrates four manipulator
configurations within the obstacle field used in the simulations.
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6 CONCLUSIONS

This paper presents an obstacle avoidance strategy for hyper-redundant manipulators using work-
space density functions. Simulations on an obstacle-laden workspace demonstrated that the pro-
posed method could achieve results similar to the original breadth-first search method. It is impor-
tant to note that the sequential nature of the proposed algorithm could potentially lead to problems
in certain types of scenarios. These problems would arise from the fact that the base sections must
commit to particular configurations without any knowledge on the nature of the obstacles in the
end-effector region. However, the large redundancy of these types of devices could be used suggest
alternate module configurations in the event of a collision.
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