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Abstract
For translational parallel manipulators (TPM), topology synthesis methods that can be found in
the literature are mainly based on screw theory, instantaneous kinematics, or group theory. In this
work, finite displacement equations are used for the topology synthesis of TPM. Serial chains with
less than 6 degrees of freedom (DOF) are first investigated and, topological conditions for them to
generate 3D translations while its end-effector (EE) is under a constant orientation constraint are
derived. Then the parallel manipulators (PM) composed of these serial chains are analyzed to find
out whether and under what conditions the EE will keep a constant orientation throughout a finite
workspace.
Keywords: Translational Parallel Manipulator, Synthesis, Topology, Kinematics, Displacement

Synthèse topologique des manipulateurs parallèles

Résumé
Les méthodes de synthèse topologique des manipulateurs parallèles en translation (MPT) sont prin-
cipalement basées sur la théorie des visseurs, la cinématique instantanée, et la théorie des groupes
de Lie. Dans cet article, nous proposons une approche de synthèse topologique des MPTs en util-
isant les équations de déplacement. Une étude des chaînes cinématiques sérielles ayant moins de
6 degrés de liberté (DDL) est d’abord effectuée afin de déduire les conditions topologiques pour
celles-ci de produire des déplacements de 3 DDL en translation lorsqu’une contrainte d’orientation
constante est imposée sur leurs effecteurs. Les manipulateurs parallèles composés de ces chaînes
cinématiques sérielles sont en suite étudiés afin de savoir si et sous quelles conditions l’effecteur
peut avoir une orientation constante.
Mots-clé: manipulateur parallèle en translation, synthèse, topologie, cinématique, déplacement
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1 INTRODUCTION

From the kinematic point of view, a mechanism is a kinematic chain with one of its links specified
as the base and another one as the end-effector (EE); a manipulator is a mechanism with all or some
of its joints actuated; driven by the actuated joints, the EE and all other links undergo constrained
motions with respect to the base. A parallel manipulator (PM) is a closed-loop mechanism in which
the EE is connected to the base through at least two independent kinematic chains (subchain). A
fully parallel manipulator is a PM with an n-degree-of-freedom (DOF) EE connected to the base
by n independent kinematic chains, each having a single actuated joint.

Due to the closed-loop nature, PMs possess kinematic properties which are complementary
to those of traditional serial manipulators (SM). Applications of PMs can be found in motion
simulators, high-precision surgical tools, precision assembly tools, machine tools, and a number
of industrial equipments because of their high load-carrying capacity, accurate positioning, high
speed, and high capacity of acceleration.

Although PMs have been very successful in some applications, offering high performance, they
are not yet completely accepted in some industrial areas, e.g. the machine-tool industry [1]. Com-
plex kinematic model and limited workspace inherent to closed-form mechanisms may explain this
scenario at theoretical level [2]. To overcome some of the drawbacks, one of the strategies is to
connect in series two PMs of 3 DOF (the two together producing the 6-DOF mobility of the EE)
in the aim to improve overall performances and make the design easier [3]. The advantages of
this kind of hybrid manipulators are illustrated by a hybrid kinematic machine [4]. Therefore, the
synthesis of PMs of 3 DOF has become an important design issue.

During the last two decades, a great number of novel designs of PMs have been reported in the
literature and enormous effort has been devoted to their kinematic studies. Amongst the represen-
tative architectures of early translational PMs (TPM), we can cite Delta PM [5], Y-Star PM [6],
Orthoglide PM [7], and 3-UPU PM [8]. Research works on these TPMs were carried out mainly
on a case-by-case basis and they have little in common on synthesis and analysis methodology.
As systematic synthesis approaches were gradually introduced into the topological and geometric
synthesis, the number of new designs had been increasing quadratically. Based on Group The-
ory, the synthesis of a family of TPMs was realized by [9]. The application of group theory also
leads to the synthesis of a set of spherical PMs [10]. Graph theory, which has been successfully
used to planar mechanism synthesis, was used to enumerate some PMs [11]. Applying Screw
Theory to the synthesis of PMs was investigated and a detailed procedure was proposed in [12].
With this approach and similar methods, a large number of topologies for TPMs were generated
[13, 14, 15, 16]. Synthesis based on instantaneous kinematics was proposed in [17]. The main
drawback of the methods based on Screw Theory or instantaneous kinematics is that the motion
type issue for the entire workspace can not be properly addressed.

The objective of this work is to derived topology conditions for fully PMs to have only trans-
lational degrees of freedom within a finite workspace. This is done by using directly the finite
displacement equations.
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2 KINEMATIC MODELLING AND DEFINITIONS

The kinematic composition of a manipulator is the essential information about the number of its
links, which link is connected to which other links by what types of joints and which joints are
actuated. The characteristic constraints are the minimum conditions for a manipulator of a given
kinematic composition to have the required kinematic properties. The topology of a manipulator
is its kinematic composition plus the characteristic constraints. The geometry of a manipulator is
a set of constraints on the relative locations of its joints carried by the same link and the relative
locations of its links coupled by the same joint. The geometry is unique to each of the manipulators
of the same topology. Joint variables of a joint describe the relative position and orientation of two
links coupled by the joint. The number of joint variables is the DOF of the joint.

To simplify the kinematic parametrization and without loss of generality, joints of more than one
DOF are decomposed into the combinations of 1-DOF joints. Since the EE of a PM is connected
to the base by independent serial kinematic chains, the Denavit-Hartenberg notation [18] for serial
mechanism can therefore be used here for each so-called subchain of PM. The links of serial chain
j are identified by (j, 0) to (j, mj), with (j, 0) for the base and (j, mj) for the end link. A reference
frame is attached to each link and is identified in the same way as the links. Since the EE and the
base of a PM composed of n subchains each carry n joints, n + 1 reference frames are defined on
each of them in order to defined their geometry; F1, 0 ∼ Fn, 0 and Fb are defined on the base with
their z-axes aligned while F1, m1

∼ Fn, mn
and Fe are defined on the EE with their z-axes aligned.

Symbols used to formulate the kinematic model are as follows:

• b, e : subscripts to identify the base and the EE;

• Fi : reference frame attached to link i;

• Qc : 3 × 3 orientation matrix of Fc with respect to Fb;

• Rz (θ), Rx (α) : rotation matrices around z and x-axes by θ and α respectively;

• Rhz (θ), Rhx (α): homogeneous transformation of Rz (θ), Rx (α);

• Bz (d), Bx (a): homogeneous translation of d along z and x axis;

• Ci : 4 × 4 homogeneous transformation matrix of Fi in Fi−1;

• Hi : 4 × 4 homogeneous transformation matrix of Fi in Fb;

• ei : the kth canonical vector ek ≡

[

0 · · · 0
︸ ︷︷ ︸

k−1

1 0 · · · 0
︸ ︷︷ ︸

n−k

]T

whose dimension is implicit and depends on the context.
The sequence of links in a serial chain has a corresponding sequence of homogeneous transfor-

mations that defines the position and orientation of each link relative to its neighbor in the chain.
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The position and orientation of the EE of a PM is therefore defined by the product of these trans-
formations through any serial chain, i.e.,

He =

(mj
∏

i=0

Cj, i

)

Cj, e, j = 1, · · · n

Cj, i = Bz(dj, i)Rhz(θj, i)Rhx(αj, i)Bx(aj, i), Cj, e = Bz(dj, e)Rhz(θj, e) (1)

For revolute joint, θj, i is the joint variable while dj, i is the joint variable for prismatic joint (except
for θj, 0, dj, 0, θj, e, and dj, ewhich are geometric parameters for the base and the EE). Other param-
eters define the geometry of the PM. As opposed to synthesis methods based on screw theory or
instantenous kinematics, our synthesis method is based on finite displacement eq(1).

3 POSSIBLE SUBCHAIN TOPOLOGIES FOR TPMS

By taking the orientation part of equation (1) for subchains of less than 6 joints, we get the orien-
tation space

{Qe | Qe =

[
m∏

i=0

[Rz(θi)Rx(αi)]

]

Rz(θe)}, m < 6 (2)

where the subchain-identifying subscript is dropped off for simplicity. When imposing a constant
orientation constraint to the EE, we get the following structure equations

He =

(
m∏

i=0

Ci

)

Ce, m < 6

[
m∏

i=0

[Rz(θi)Rx(αi)]

]

Rz(θe) = Q0, Q0 ∈ {Qe} (3)

where eq.(3) is equivalent to 3 scalar equations and reduces the DOF of the subchain by mR ≤ 3.
In order to produce 3-DOF translation under eq.(3), the subchains must have

m − mR ≥ 3, m < 6 ⇒ mR ∈ {0, 1, 2} (4)

Since prismatic joint variables are not involved in eq.(3), mR depends only on the number of rev-
olute joints and their relative orientations. The spatial arrangement of revolute joints can therefore
be derived. Let the revolute joints of a subchain be denoted with R1 to RM , then if all revolute
joints are parallel eq.(3) can be written as

F1Rz(
M∑

i=1

θRi
)F2 = Q0 (5)

where F1 and F2 are constant matrices determined by the subchain geometry. Equation (5) means
that the DOF of the subchain is reduced by 1, i.e. mR = 1.

If Rk and Rk+1 with 0 < k < M are not parallel then eq.(3) can be written as

F3(θR1
, . . . , θRk−1

)Rz(θRk
)F4Rz(θRk+1

)F5(θRk+2
, . . . , θRM

) = Q0 (6)
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where F3 and F5 are known functions while F4 is a constant orthogonal matrix. From eq.(6) and
the fact that Rz(θ)e3 = e3 and e

T
3 Rz(θ) = e

T
3 , we get

Rz(θRk
)F4e3 = F3(θR1

, . . . , θRk−1
)TQ0F5(θRk+2

, . . . , θRM
)T

e3 (7)
e

T
3 F4Rz(θRk+1

) = e
T
3 F3(θR1

, . . . , θRk−1
)TQ0F5(θRk+2

, . . . , θRM
)T (8)

which mean that θRk
and θRk+1

can be solved as function of other joint variables, the DOF of the
subchain is reduced by 2, i.e. mR = 2. It can therefore be concluded that to satisfy eq.(4): 1)
3-joint subchains can only have prismatic joints; 2) all revolute joints of 4-joint subchains should
be parallel. Now we further analyze subchains in which not all revolute joints are parallel. If 1) R1

to Rk are parallel; 2) Rk and Rk+1 are not parallel; 3) Rk+1 to Rl are parallel; 4) Rl to Rl+1 are not
parallel; 5) Rl+1 to RM are parallel, where 0 < k < l < M , then eq.(3) can be written as

F6Rz(
k∑

i=1

θRi
)F7Rz(

l∑

i=k+1

θRi
)F8Rz(

M∑

i=l+1

θRi
)F9 = Q0 (9)

where F6 ∼ F9 are constant orthogonal matrices. Equation (9) is equivalent to 3 scaler equations
with

k∑

i=1

θRi
,

l∑

i=k+1

θRi
, and

M∑

i=l+1

θRi
as unknowns. Performing linear transformations on eq.(9), we

get

e
T
3 F7Rz(

l∑

i=k+1

θRi
)F8e3 = e

T
3 FT

6 Q0F
T
9 e3 (10)

Rz(
k∑

i=1

θRi
)F7Rz(

l∑

i=k+1

θRi
)F8e3 = FT

6 Q0F
T
9 e3 (11)

e
T
3 F7Rz(

l∑

i=k+1

θRi
)F8Rz(

M∑

i=l+1

θRi
) = e

T
3 FT

6 Q0F
T
9 (12)

l∑

i=k+1

θRi
can be solved from eq.(10) and in general case,

k∑

i=1

θRi
and

M∑

i=l+1

θRi
can then be solved

from eqs.(11) and (12) respectively, reducing the DOF of the subchain by 3, i.e. mR = 3. However,
if the subchain has such a geometry that

∀θS ∈ {
l∑

i=k+1

θRi
| e

T
3 F7Rz(

l∑

i=k+1

θRi
)F8e3 = e

T
3 FT

6 Q0F
T
9 e3} ∃θC ∈ IR

F7Rz(θS)F8 = Rz(θC) (13)

then
k∑

i=1

θRi
and

M∑

i=l+1

θRi
vanish from eqs. (11) and eq.(12) respectively. In this case, from eqs.(9)

and (13) we get

F6Rz(
k∑

i=1

θRi
+

M∑

i=l+1

θRi
+ θC)F9 = Q0 (14)
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and the DOF of the subchain is actually reduced by 2 (eq.10 and eq.14), i.e. mR = 2. The physical
interpretation of eqs.(13) and (14) is that Q0 is attained by the EE while axes of Rk and Rl+1 are
parallel. In order for the axes of Rk and Rl+1 to reach the parallel relative location, the angle
between Rk and Rk+1 should be equal to the angle between Rl and Rl+1.

Based on the revolute joint situations, subchains can be classified into the following categories:

T-subchain: a subchain with only prismatic joints, non of them being parallel;

I-subchain: a subchain whose revolute joints are all parallel;

A-subchain: a subchain where only one pair of adjacent revolute joints are not parallel;

Z-subchain: a subchain where only two pairs of adjacent revolute joints are not parallel and the
two pairs of the non parallel revolute joints have the same angle.;

Y-subchain: a subchain which is not a Z-subchain and has more than one pair of adjacent revolute
joints which are not parallel.

Then, from the above analysis, the possible subchain topologies for TPMs are derived as listed in
table 1.

Table 1: Possible subchain topologies for TPMs

3-joint 4-joint 5-joint 6-joint

T-subchain Yes No No No

I-subchain No Yes No No

A-subchain No No Yes No

Z-subchain No No Yes Yes

Y-subchain No No No Yes

4 ANALYSIS OF THE EE ORIENTATION SPACE OF PMS OF 3 DOF
The orientation space of a PM is formed by the orientation part of the set of solutions of eq.(1). In
order to synthesize topologies of TPMs, the reasoning is as follows: if

1. the orientation part of the set of solutions of eq. (1) has only finite number of elements, (i.e.
all solitary subspaces of the orientation space is a single element subspace, no orientation
path exists between any two of them, meaning that the EE of the PM can not pass from one
orientation to another without being reassembled), and

2. each subchain allows the EE to have 3 DOFs in translation without changing its orientation,

then the PM is naturally a TPM.
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4.1 PMs with a T-subchain
Under the constraint of the T-subchain, the orientation space of the EE is a single element space
determined by the geometry of this subchain, i.e.

Qe =

[
m1∏

i=0

[Rz(θ1, i)Rx(α1, i)]

]

Rz(θ1, e), m1 = 3 (15)

The EE will not have any displacement in orientation. From the point of view of eliminating dis-
placements in orientation, the second and third subchains can be of any possible subchain topolo-
gies derived in the previous section (table 1). However, if the dimension of the orientation space
of any of the other subchains is lower then 3, the PM becomes overconstrained, exact geometries
of the base and the EE are necessary for eq.(1) to have any real solution, i.e. for the PM to be
assembled.

4.2 PMs with an I-subchain
Let the first subchain be an I-subchain, then from eq. (5), we get

F1, 1Rz(
M1∑

i=1

θR1, i
)F1, 2 = Qe (16)

If the second subchain is also an I-subchain, then

F2, 1Rz(
M2∑

i=1

θR2, i
)F2, 2 = Qe (17)

Combining eqs.(16) and (17) yields

FT
2, 1F1, 1Rz(

M1∑

i=1

θR1, i
)F1, 2F

T
2, 2 = Rz(

M2∑

i=1

θR2, i
) (18)

Since Rz(θ)e3 = e3, from eq.(18) we have

FT
2, 1F1, 1Rz(

M1∑

i=1

θR1, i
)F1, 2F

T
2, 2e3 = e3 (19)

It is obvious that eq.(16) and (19) define a single element orientation space. If the second subchain
is an A-subchain and the non parallel revolute joints are R2,k2

and R2,k2+1, then

F2,3Rz(
k2∑

i=1

θR2,i
)F2,4Rz(

M2∑

i=k2+1

θR2,i
)F2,5 = Qe (20)

Combining eqs.(16) and (20) leads to

Rz(
k2∑

i=1

θR2,i
)F2,4Rz(

M2∑

i=k2+1

θR2,i
)F2,5F

T
1, 2 = FT

2,3F1, 1Rz(
M1∑

i=1

θR1, i
) (21)

2009 CCToMM M3 Symposium 7



Eliminating
k2∑

i=1

θR2,i
and

M1∑

i=1

θR1, i
from eq.(21), we get

e
T
3 F2,4Rz(

M2∑

i=k2+1

θR2,i
)F2,5F

T
1, 2e3 = e

T
3 FT

2,3F1, 1e3 (22)

where
M2∑

i=k2+1

θR2,i
is the only unknown and can have at most two solutions. It is clear that under the

constraints of an I-subchain and an A-subchain, the EE has only two possible orientations, each
corresponding to an assembly mode; given an assembly mode, it is impossible for the EE to change
orientation. The third subchain can be of any topologies listed in table 1.

4.3 PMs with three A-subchains
If the three subchains are all A-subchains, we have

F1,3Rz(
k1∑

i=1

θR1,i
)F1,4Rz(

M1∑

i=k1+1

θR1,i
)F1,5 = Qe (23)

F2,3Rz(
k2∑

i=1

θR2,i
)F2,4Rz(

M2∑

i=k2+1

θR2,i
)F2,5 = Qe (24)

F3,3Rz(
k3∑

i=1

θR3,i
)F3,4Rz(

M3∑

i=k3+1

θR3,i
)F3,5 = Qe (25)

let

φj,1 ≡
kj
∑

i=1

θRj,i
, φj,2 ≡

Mj
∑

i=kj+1

θRj,i
, j = 1, 2, 3

then from eqs.(23) to (25) and upon rearrangement, we have

FT
2,3F1,3Rz(φ1,1)F1,4Rz(φ1,2)F1,5F

T
2,5 = Rz(φ2,1)F2,4Rz(φ2,2) (26)

FT
3,3F1,3Rz(φ1,1)F1,4Rz(φ1,2)F1,5F

T
3,5 = Rz(φ3,1)F3,4Rz(φ3,2) (27)

Eliminating the unknowns on the right sides of eqs.(26) and (27), we have

e
T
3 FT

2,3F1,3Rz(φ1,1)F1,4Rz(φ1,2)F1,5F
T
2,5e3 = e

T
3 F2,4e3 (28)

e
T
3 FT

3,3F1,3Rz(φ1,1)F1,4Rz(φ1,2)F1,5F
T
3,5e3 = e

T
3 F3,4e3 (29)

Let

sin(φ1,1) ≡
2s

1 + s2
, cos(φ1,1) ≡

1 − s2

1 + s2
, sin(φ1,2) ≡

2t

1 + t2
, cos(φ1,2) ≡

1 − t2

1 + t2

then the following set of equations can be derived from eqs.(28) and (29):

[ t2 t 1 ]A[ s2 s 1 ]T = 0 (30)
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where A is a 3-by-3 matrix whose elements depend only on the geometry of the subchains.
Equation (30) is ready to be solved and can have at most 8 real solutions. That is to say under

the constraints of three A-subchains the EE can have only finite number of orientations with each
orientation corresponding to an assembly mode. Given an assembly mode, it is impossible for the
EE to change orientation.

4.4 PMs with one Z-subchain and two A-subchains
Let the first subchain be the Z-subchain and the rest be the A-subchains. The orientation equations
are

F1,6Rz(
k1∑

i=1

θR1,i
)F1,7Rz(

l1∑

i=k1+1

θR1,i
)F1,8Rz(

M1∑

i=l1+1

θR1,i
)F1,9 = Qe (31)

F2,3Rz(
k2∑

i=1

θR2,i
)F2,4Rz(

M2∑

i=k2+1

θR2,i
)F2,5 = Qe (32)

F3,3Rz(
k3∑

i=1

θR3,i
)F3,4Rz(

M3∑

i=k3+1

θR3,i
)F3,5 = Qe (33)

let

φ1,1 ≡
k1∑

i=1

θR1,i
, φ1,2 ≡

l1∑

i=k1+1

θR1,i
, φ1,3 ≡

M1∑

i=l1+1

θR1,i
,

φj,1 ≡
kj∑

i=1

θRj,i
, φj,2 ≡

Mj∑

i=kj+1

θRj,i
, j = 2, 3 (34)

then from eqs.(31) to (33), we have

FT
2,3F1,6Rz(φ1,1)F1,7Rz(φ1,2)F1,8Rz(φ1,3)F1,9F

T
2,5 = Rz(φ2,1)F2,4Rz(φ2,2) (35)

FT
3,3F1,6Rz(φ1,1)F1,7Rz(φ1,2)F1,8Rz(φ1,3)F1,9F

T
3,5 = Rz(φ3,1)F3,4Rz(φ3,2) (36)

From the Z-subchain property (eq.13), we know that there exists θS such that

φ1,2 = θS , ∃θC ∈ IR, F1,7Rz(θS)F1,8 = Rz(θC) (37)

When φ1,2 = θS , eqs.(35) and (36) become

FT
2,3F1,6Rz(φ1,1 + φ1,3 + θC)F1,9F

T
2,5 = Rz(φ2,1)F2,4Rz(φ2,2) (38)

FT
3,3F1,6Rz(φ1,1 + φ1,3 + θC)F1,9F

T
3,5 = Rz(φ3,1)F3,4Rz(φ3,2) (39)

Elimination of φ2,1 and φ2,2 from eq.(38) yields

e
T
3 FT

2,3F1,6Rz(φ1,1 + φ1,3 + θC)F1,9F
T
2,5e3 = e

T
3 F2,4e3 (40)
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φ1,1 + φ1,3 can be easily solved as φ1,1 + φ1,3 = C, C ∈ IR. When φ1,2 6= θS , for any given φ1,3,
φ1,1 and φ1,2 can be solved from eqs.(35) and (36) in the same way as eqs.(26) and (27). Hence,
φ1,1 = f1(φ1,3), φ1,2 = f1(φ1,3), ∀φ1,3 ∈ IR, φ1,2 6= θS From eq.(31) we know that the orientation
of the EE is determined by the triple [φ1,1, φ1,2, φ1,3] and the orientation space is a metric space
X = {[φ1,1, φ1,2, φ1,3]} which is the union of two subspaces:

X = X1 ∪ X2, X1 = {[φ1,1, φ1,2, φ1,3] | φ1,2 = θS; φ1,1 + φ1,3 = C; θS, C ∈ IR}
X2 = {[φ1,1, φ1,2, φ1,3] | φ1,2 6= θS; φ1,1 = f1(φ1,3); φ1,2 = f2(φ1,3); θS, ∀φ1,3 ∈ IR}

From eqs. (31)and (37), it can be derived that

F1,6Rz(C + θC)F1,9 = Qe

which means that the EE has a constant orientation within subspace X1. Since X1 and X2 are of
one dimension, there exists a neighborhood Bε(x) within X1 such that Bε(x)∩X2 = NULL That
is to say it is impossible for the EE to change orientation within Bε(x). With the same procedure,
it can be proven that such a neighborhood exists for PMs with two or three Z-subchains.

5 TOPOLOGICAL SYNTHESIS OF TPMS

With the analyses carried out in the previous sections, the topological synthesis of TPMs becomes
easier and can be summarized as follows:

The first step is to determine the type of each subchain. The type of the first subchain can be of
any of those listed in table 1. Depending on the choice of the first subchain, the second and third
can be determined such that a constant orientation configuration neighborhood exists.

1. If the first subchain is a T-subchain, then the second and the third can be any of those listed
in table 1;

2. If the first subchain is an I-subchain then at least one of the second and the third should not
be an Y-subchain;

3. If the first subchain is an A-subchain or Z-subchain, then the second and the third can be
either an A-subchain or a Z-subchain.

This can also serve as a verification for the synthesis based on instantaneous kinematics. Then,
the next step is to determine the topology of a subchain of a given type so as to generate 3-DOF
translation. This can be done by using the synthesis methods for serial kinematic chains. This
topological synthesis approach can be illustrated by existing TPM topologies. If the first subchain
is an I-subchain then the second and third subchains can also be an I-subchain in order to synthesize
a TPM. Using the synthesis methods for serial kinematic chains, one knows that a P1R1R1R1 (P
denotes prismatic joint and R for revolute joint; joints with the same subscript are parallel) subchain
is an I-subchain and possesses 3 DOF when its EE is constrained to a constant orientation. Fig. (1a)
shows a TPM of this topology. If the first subchain is an A-subchain then the second and the third
subchains can also be an A-subchain. We know that a R1R1R2R2R2 subchain is an A-subchain and
satisfies the condition for forming a TPM. Fig. (1b) shows a TPM with 3 R1R1R2R2R2 subchains.
Fig. (1c) shows a TPM with 3 R1R1R2R2R1 subchains which are Z-subchains.
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Figure 1: TPMs with a) I-subchains [19]; b) A-subchains [20]; c)Z-subchains [15]

6 CONCLUSION

The proposed kinematic model applies to the most general topologies and geometries of 3-DOF
PMs and therefore allows a thorough analysis of how the translational displacement and the con-
figuration of a subchain are affected by a constant orientation constraint on the EE. The topological
constraints are derived for a serial kinematic chain of less than 6 joints to produce 3-DOF transla-
tion with a constant orientation of the EE. Subchains can be classified as T-subchain, I-subchain,
A-subchain, Z-subchain, and Y-subchain. The analysis of the orientation solutions of the forward
kinematics of all subchain combinations confirms which kinds of combination can produce a con-
stant EE orientation in a finite configuration space. The finite configuration space may be the entire
configuration space, a particular assembly mode, or a neighborhood in the configuration space.
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