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Abstract This work focuses on the geometric synthesis of planar 3-RPR parallel mechanisms
in order to guarantee a singularity-free workspace for a desired orientation range. The effects
of the orientation angle, the minimal leg length as well as the base shape on the singularity-free
workspace are analyzed using the Gauss divergence theorem. The results show that for every ori-
entation angle, there exists an optimal minimal leg length which leads to the maximal singularity-
free workspace. If the optimal minimal leg lengths are used, the equilateral triangle base yields the
maximal singularity-free workspace for any orientation angle. However, for a prescribed working
range of the orientation angle, the optimal minimal leg length may be different from the individual
optimal minimal leg lengths. Based on the optimal minimal leg length determined for a prescribed
working range of the orientation angle, a geometric synthesis procedure is proposed in order to
guarantee a singularity-free workspace.

Keywords: Planar 3-RPR parallel mechanisms, Singularity-free workspace, Optimal minimal
leg length, Geometric synthesis

Synthèse géométrique des mécanismes parallèles plans de type 3-RPR pour l’espace de
travail libre de singularité

Résumé Ce travail se concentre sur la synthèse géométrique des mécanismes parallèles plans de
type 3-RPR afin de garantir un espace de travail libre de singularité pour un débattement angulaire
désiré. Les effets de l’orientation, de la longueur minimale des pattes ainsi que de la forme de la
base sur la zone de travail libre de singularité sont analysés en utilisant le théorème de la diver-
gence de Gauss. Les résultats prouvent que pour chaque angle d’orientation, il existe une longueur
minimale optimale des pattes qui mène à la zone de travail libre de singularité maximale. Si les
longueurs minimales optimales des pattes sont considérées, la base triangulaire équilaterale corre-
spond à la zone de travail libre de singularité maximale pour n’importe quel angle d’orientation.
Cependant, pour une plage d’orientation prescrite, la longueur minimale optimale des pattes peut
être différente des longueurs minimales optimales individuelles des pattes. Basé sur la longueur
minimale optimale des pattes déterminée pour un débattement angulaire prescrit, on propose une
procédure de synthèse géométrique afin de garantir une zone de travail libre de singularité.

Mots clés: Mécanismes parallèles plans 3-RPR, Espace de travail libre de singularité, Longueur
minimale optimale des pattes, Synthèse géométrique



1 INTRODUCTION

Parallel mechanisms possess remarkable advantages over serial mechanisms in terms of dynamic
properties, load-carrying capacity, high accuracy as well as stiffness or stability. However, the
closed-loop nature of their architecture limits the motion of the platform and creates complex
kinematic singularities inside the workspace. Hence, avoiding singularities inside the workspace
becomes a very important issue.

Basically, there are three types of singularities [1]. Among these three types, the second type
of singularities — direct kinematic singularity — may occur inside the workspace and is thus
a serious concern for robot designers. In order to avoid this type of singularities, deriving the
singularity equations is the first and key step ([1]–[5]).

Planar 3-RPR parallel mechanisms were studied by several researchers ([6]–[13]). In [6], the
architectures of planar 3-RPR parallel mechanisms with simplified singularity loci and a procedure
to determine the singularity-free workspace were proposed. This work will focus on the geometric
synthesis of planar 3-RPR parallel mechanisms in order to guarantee a singularity-free workspace
for a desired orientation range.

2 SINGULARITY-FREE WORKSPACE

As shown in Fig.1, a planar 3-RPR parallel mechanism with actuated prismatic joints consists
of a fixed triangular base 4B1B2B3 and a mobile triangular platform 4P1P2P3. Bi and Pi are
connected via the actuated prismatic joint of variable length ρi(i = 1, 2, 3). Passive revolute joints
are located at Bi and Pi, and the mechanism has 3 DOFs. The moving platform can translate in the
xy plane and rotate with respect to an axis perpendicular to the xy plane.

Referring to Fig.1, assume, without loss of generality, that the coordinates of the attachment
points of the base in the fixed frame Oxy are B1(0,0), B2(t1,0) and B3(t2, t3) and the coordinates
of the attachment points of the platform in the mobile frame O′x′y′ are P ′1(0,0), P ′2(t4,0) and
P ′3(t5, t6). With the frames defined as shown in Fig.1, a simple singularity equation for an arbitrary

Figure 1: Planar 3-RPR parallel mechanism.



point P on the platform was derived in [6]. It takes the following form:

G1x
2 +G2y

2 +G3xy +G4x+G5y +G6 = 0, (1)

where the coefficients Gi(i = 1, 2, ..., 6) are functions of xp, yp, φ, t1, t2, ..., t6, while xp, yp are the
coordinates of point P in the mobile frame and φ is the orientation angle.

In general, the singularity locus may be a hyperbola or a parabola or an ellipse [2]. Analyzing
eq.(1) carefully, it can be found that when the base and the platform are similar triangles (i.e.
t4/t1 = t5/t2 = t6/t3 = k, k is the size ratio between the platform and the base), G3 ≡ 0 and
G1 ≡ G2. In this case, the singularity locus is a circle (a special case of ellipse). This result
was pointed out in [7] and can be summarized as follows: as long as the base and the platform
are similar triangles, the singularity locus of any point on the platform, for a given orientation
φ 6= iπ(i = 0, 1), is a circle with centre C(xc, yc) and radius R as follows:

xc = −G4/(2G1) = x(xp, yp, t1, t2, t3, k, φ),
yc = −G5/(2G1) = y(xp, yp, t1, t2, t3, k, φ),

R =
√

[G4/(2G1)]2 + [G5/(2G1)]2 −G6/G1 = R(t1, t2, t3, k, φ).
(2)

Eq.(2) shows that the radius of the singularity circle is independent from the position of the
considered point P . When φ = iπ(i = 0, 1), the whole plane becomes singular. This observation
was used in [7] to determine the uniqueness domains of planar 3-RPR parallel mechanisms with
similar base and platform.

Referring to [10], the workspace equations of planar 3-RPR parallel mechanisms can be given
as

ρ2
1 = [x− (xpcφ− ypsφ)]2 + [y − (xpsφ+ ypcφ)]2,
ρ2

2 = [x− (xpcφ− ypsφ− t4cφ+ t1)]
2 + [y − (xpsφ+ ypcφ− t4sφ)]2,

ρ2
3 = [x− (xpcφ− ypsφ− t5cφ+ t6sφ+ t2)]

2 + [y − (xpsφ+ ypcφ− t5sφ− t6cφ+ t3)]
2,
(3)

where cφ = cosφ, sφ = sinφ.
Actually, for a given orientation φ, these are three circle equations. These circles can be referred

to as workspace circles, because they are used to determine the workspace based on the minimal
and maximal values of ρi (i = 1, 2, 3). In [6], it is verified that the three centres of the workspace
circles lie exactly on the singularity circle and a procedure is proposed to determine the singularity-
free workspace, as shown in Fig.2. The hatched region formed by five arcs, M4N3N

′
3M5N2M4, is

the singularity-free workspace. The singularity-free workspace is related to the size of the inscribed
circle of triangle4C1C2C3. Moreover, when the base is an equilateral triangle, this inscribed circle
becomes maximal. This point can be verified as follows: for a base of unit area, the radius of the
inscribed circle of triangle4C1C2C3 can be expressed as

r = r(t1, t2, k, φ). (4)

For a given value of k and φ, to obtain the maximum of r, the following conditions need to be



satisfied: 
∂r/∂t1 = 0,
∂r/∂t2 = 0,
∂2r/∂t21 < 0,
∂2r/∂t22 < 0.

(5)

For an equilateral triangle base of unit area, t1 = 2/ 4
√

3, t2 = 1/ 4
√

3. Substituting these values
into eq.(5), it can be found that eq.(5) is satisfied.

3 ANALYSIS OF THE SINGULARITY-FREE WORKSPACE

Considering that the centroid Cp of the platform is a good representative point, this point will
be taken as the considered point P in the following sections for singularity analysis. Hence, xp =
(t4+t5)/3, yp = t6/3. The area of the singularity-free workspace can be computed using the Gauss
divergence theorem, provided that a description of the boundary of the workspace is available.
Since the singularity-free workspace can be affected by several factors such as the orientation
angle φ, the minimal leg length ρmin as well as the shape of the base, this section analyzes the
effects of these factors.

3.1 Determination of the Singularity-Free Workspace

In order to compute the area of the singularity-free workspace, the first and key step is the determi-
nation of its boundary. The boundary of the singularity-free workspace of planar 3-RPR parallel
mechanisms can be defined with the method mentioned in [14]. Referring to Fig.2, the singularity-
free workspace lies inside the singularity circle. In general, the boundary possibly consists of the
arcs on six workspace circles: three circles with the minimal leg lengths ρi,min(i = 1, 2, 3) and the
others with the maximal leg lengths ρi,max(i = 1, 2, 3). The minimal leg lengths ρi,min should be

Figure 2: Singularity-free workspace.



given and the maximal leg lengths ρi,max can be determined with the procedure proposed in [6].
Hence, the boundary of the singularity-free workspace can be determined as follows:

• For every workspace circle, compute the intersections with the other six circles (including
the singularity circle).

• Order all of the intersections to divide the considered workspace circle into elementary arcs.

• Test each arc to see whether it lies on the boundary of the singularity-free workspace. If the
considered arc lies on the boundary, the two endpoints and the middle point should satisfy
the following condition:

ρi,min ≤ di ≤ ρi,max (i = 1, 2, 3), (6)

where di is the distance from the endpoints or the middle point of the considered arc to the
centre Ci of the workspace circle.

After the boundary has been defined, the area of the singularity-free workspace can be com-
puted using the Gauss divergence theorem [14].

3.2 Effect of the Orientation Angle

The following three cases are used for study:
Case 1: The base geometric parameters are: t1 = 1.8, t2 = 1.2, t3 = 1.11, which form an acute

triangle of unit area.
Case 2: The base geometric parameters are: t1 = 2/ 4

√
3, t2 = 1/ 4

√
3, t3 = 4

√
3, which form an

equilateral triangle of unit area.
Case 3: The base geometric parameters are: t1 = 1.8, t2 = 2.2, t3 = 1.11, which form an

obtuse triangle of unit area.
With the algorithm proposed in Section 3.1, the area of the singularity-free workspace as a

function of the orientation angle φ for ρmin = 0.2 can be computed and is shown in Figs.3 and
4. Fig.3 shows that for a large range of the orientation angle, the equilateral triangle base yields
the maximal singularity-free workspace. But when the orientation angle is small, Fig.4 shows that
the obtuse triangle base may yield the maximal singularity-free workspace. The reason will be
explained in the following subsection.

3.3 Effect of the Minimal Leg Length

If the minimal leg length ρmin is constant for any orientation angle, Fig.4 shows that when the ori-
entation angle is small, the obtuse triangle base may lead to the maximal singularity-free workspace.
This is because of the effect of the minimal leg length ρmin. To demonstrate this point, the area
of the singularity-free workspace as a function of the minimal leg length ρmin for φ = 45◦ is
computed and shown in Fig.5. This figure shows that for each case, there exists an optimal value
of ρmin, which leads to the maximal singularity-free workspace. When φ is small, the singularity
circles also become small. For a constant ρmin, this is equivalent to increasing the value of ρmin for



Figure 3: The area of the singularity-free workspace vs φ (ρmin = 0.2).

Figure 4: The area of the singularity-free workspace vs small φ (ρmin = 0.2).

Figure 5: The area of the singularity-free workspace vs ρmin (φ = 45◦).

unchanged singularity circles. As a result, the obtuse triangle base obtains a larger singularity-free
workspace than the equilateral triangle base (see Fig.5).

To compare the singularity-free workspaces of the three cases, it should be more reasonable to



Figure 6: The area of the singularity-free workspace vs φ (optimal ρmin).

Figure 7: The optimal ρmin vs φ.

use their respective optimal value of ρmin for every φ. Fig.6 shows the area of the singularity-free
workspace as a function of φ with optimal ρmin. It can be seen that for any orientation angle φ, the
equilateral triangle base always yields the maximal singularity-free workspace.

Obviously, for different orientation angles, the optimal values of ρmin are different. Fig.7 shows
the optimal ρmin as a function of the orientation angle φ. It can be seen that the optimal ρmin for
equilateral triangle base is minimal. This is consistent with Fig.5.

3.4 Effect of the Base Shape

From the three case studies described in the previous subsections, it seems that when the base is an
equilateral triangle, the planar 3-RPR parallel robot has the maximal singularity-free workspace.
However, the following question arises: if the base assumes the shape of other acute or obtuse
triangles, is this conclusion still true? In order to answer this question, consider the geometric
parameter t1 = 2/ 4

√
3, which is the side length of an equilateral triangle base of unit area, as a

constant. Referring to Fig.1, changing t2 leads to different base shapes. Starting from -5, with an
increase of t2, the base shape changes as follows:



obtuse triangle (t2 < 0) → right triangle (t2 = 0) → acute triangle (0 < t2 < 1/ 4
√

3) →
equilateral triangle (t2 = 1/ 4

√
3)→ acute triangle (1/ 4

√
3 < t2 < 2/ 4

√
3)→ right triangle (t2 =

2/ 4
√

3)→ obtuse triangle (t2 > 2/ 4
√

3).
The numerical results with several typical orientation angles are shown in Fig.8. This fig-

ure shows that when t2 = 1/ 4
√

3 ≈ 0.76 (equilateral triangle base), the area of the singularity-
free workspace becomes maximal. Although these results do not constitute a formal proof, they
strongly support the conjecture that the equilateral triangle base provides the maximal singularity-
free workspace.

Figure 8: The area of the singularity-free workspace vs t2.

4 GEOMETRIC SYNTHESIS

4.1 Determination of the Optimal ρmin for a Prescribed Range of φ

In general, after a robot has been designed and manufactured, the size ratio k cannot change. But
the orientation angle φ should cover a working range. In order to obtain the maximal singularity-
free workspace, Fig.7 shows that for every value of φ, there exists an optimal value of the minimal
leg length ρmin. For a prescribed working range φ ∈ [φ1, φ2], it was pointed out in [6] that the
radius of the singularity circle monotonically increases with φ. In order to avoid the singular-
ity inside the workspace, the maximal leg lengths should be determined by φ1. Fig.9 shows the
construction obtained with an equilateral triangle base of unit area. The used minimal leg length
is the optimal one at φ1. The hatched region formed by six arcs, N1N

′
1N2N

′
2N3N

′
3N1, is the

singularity-free workspace at φ1. However, being limited by the maximal leg length determined
by φ1, the singularity-free workspace at φ2 is only the intercross-hatched region formed by three
arcs, M1M2M3M1. Obviously, this workspace is much smaller than the workspace at φ1. This
situation shows that the optimal values of the minimal leg lengths obtained as shown in Fig.7 are
not necessarily optimal for a prescribed working range of φ.

In order to obtain the optimal value of the minimal leg length for a prescribed working range
of φ, six case studies are now performed. The used size ratio k is 0.6 and the prescribed working
range of φ is [100◦, 165◦], i.e., φ1 = 100◦ and φ2 = 165◦.



Figure 9: The singularity-free workspaces for φ1 and φ2 (φ1 < φ2).

Case 1: The minimal leg length is 0.2.
Case 2: The minimal leg length is 0.233276, which is the optimal one at φ1.
Case 3: The minimal leg length is 0.295636, which is the optimal one at φ2.
Case 4: The minimal leg length is determined by solving the following optimization problem:

max
ρmin

Aa, (7)

where Aa is the average area of the singularity-free workspaces over the prescribed working range
of φ, which can be expressed as

Aa =
1

φ2 − φ1

∫ φ2

φ1

A(φ)dφ. (8)

Case 5: The minimal leg length is determined by minimizing the difference between A1 and
A2, which are respectively the area of the singularity-free workspaces at φ1 and φ2, i.e.,

min
ρmin

|A1 − A2|. (9)

Case 6: The minimal leg length is determined by minimizing the fluctuation of the area of the
singularity-free workspace, i.e.,

min
ρmin

∆Aa, (10)

where ∆Aa is the average difference of the area of the singularity-free workspaces with respect to
Aa, given as

∆Aa =
1

n

n∑
i=1

|Ai − Aa|, (11)



Table 1: Numerical results of the case studies.
Case ρmin ρmax A1 A2 |A1 − A2| Aa ∆Aa

1 0.2 1.995261 2.887449 1.523389 1.364060 2.088205 0.368054
2 0.233276 2.009044 2.894137 1.589744 1.304393 2.146203 0.354989
3 0.295636 2.033677 2.871123 1.711608 1.159515 2.234786 0.314177
4 0.412168 2.075469 2.709505 1.927286 0.782219 2.308779 0.207856
5 0.647965 2.142531 1.957423 1.957423 0 2.012230 0.024850
6 0.656267 2.144448 1.921667 1.947769 0.026102 1.992113 0.024325

where Ai is the area of the singularity-free workspace at φi.
If the convergence precision is set to 10−6, n in eq.(11) will be greater than 400. The numerical

results are shown as Fig.10 and listed in Table 1. The results show that for cases 1–3, the differences
between A1 and A2 as well as the values of ∆Aa are quite large. For case 4, the difference between
A1 and A2 as well as the value of ∆Aa decrease much, and Aa reaches the maximum. Hence, if
the objective of the designers is to obtain the maximal singularity-free workspace over a prescribed
range of φ, case 4 is the optimal solution.

For case 5, A1 = A2 and ∆Aa is only 0.024850, which is quite small. For case 6, the value of
∆Aa reaches the minimum, 0.024325. Fig.10 shows that the graphs corresponding to cases 5 and
6 are very close. However, the graph corresponding to case 5 is always above that corresponding
to case 6. Hence, the value of the Aa in case 5 is larger than that in case 6, while the value of the
∆Aa in case 5 is very close to that in case 6. Especially, the difference between A1 and A2 in case
5 is 0. Hence, if the objective of the designers is to obtain a singularity-free workspace of almost
the same size at every orientation angle in the prescribed range, case 5 is the optimal solution.

Figure 10: The area of the singularity-free workspace vs φ (with different ρmin).

4.2 Synthesis Procedure

In order to guarantee a singularity-free workspace for a desired orientation range, the procedure of
the geometric synthesis of planar 3-RPR parallel mechanisms can be generalized as follows:



• Select a proper size ratio k between the platform and the base.

• According to the desired function, determine a range of the orientation angle: [φ1, φ2]. Note
that φ = iπ(i = 0, 1) should not be included in the prescribed range since these values
correspond to singular orientations.

• Use eq.(7) or (9) (depending on which design objective is pursued) to compute the optimal
minimal leg length. When the minimal leg length is available, the maximal leg length at φ1

can be determined using the approach mentioned in Section 3.1. To avoid singularity inside
the workspace, this determined maximal leg length is also used as the maximal leg length
for the whole prescribed range of φ.

• Choose a proper leg length range within the computed maximal leg length range for each
leg and complete the geometric design. Take case 4 as an example, the computed maximal
leg length range is [0.412168, 2.075469]. A proper leg length range can be taken as [1,
1.5], which will guarantee a singularity-free workspace for the desired orientation range
[100◦, 165◦].

5 CONCLUSIONS

This work focuses on the geometric synthesis of planar 3-RPR parallel mechanisms in order to
guarantee a singularity-free workspace for a desired orientation range. The effects of the orien-
tation angle, the minimal leg length as well as the base shape on the singularity-free workspace
are analyzed using the Gauss divergence theorem. The results show that for every orientation
angle, there exists an optimal minimal leg length which leads to the maximal singularity-free
workspace. If the optimal minimal leg lengths are used, the equilateral triangle base yields the
maximal singularity-free workspace for any orientation angle. However, for a prescribed working
range of the orientation angle, the optimal minimal leg length may be different from the individual
optimal minimal leg lengths. Based on the optimal minimal leg length determined for a prescribed
working range of the orientation angle, a geometric synthesis procedure is proposed in order to
guarantee a singularity-free workspace. Although the proposed synthesis procedure is based on an
equilateral triangle base, it can also be applied to the geometric synthesis of planar 3-RPR parallel
robots with general similar base and platform.
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