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Abstract
In parallel cable-driven mechanisms, the unilaterality of force transmission requires a minimum
level of tension in cables to preserve their geometry. As a result, the driving electrical motors need
to produce continuous torques (and power) to maintain the cable tensions. This paper proposes
to use non-linear springs in parallel with the motors in order to maintain the minimum tension,
leaving to the motors the application of the additional forces, i.e., those forces needed to produce
accelerations and balance external forces applied at the end effector. We suggest to model the
non-linear springs behavior with n-order polynomials. The polynomial coefficients are computed
through the solution of a quadratic program, which minimizes the resultant of the spring tensions
on the end-effector while maintaining these tensions above a given threshold. Our method is
illustrated by its application to a two-degree-of-freedom planar parallel cable-driven manipulator.

Keywords: parallel cable-driven mechanisms, static balancing, quadratic programming.

Équilibrage statique approximatif d’un mécanisme parallèle plan à entraı̂nement par câbles

Résumé
L’unilatéralité de la transmission des forces dans les mécanismes parallèles à entraı̂nement par
câbles (MPEC) impose un niveau minimum de tension dans les câbles pour conserver leur géométrie.
Afin de maintenir cette tension, les moteurs électriques d’un MPEC doivent fournir un couple et
une puissance constants. Cet article propose d’utiliser des ressorts non-linéaires fixés en par-
allèle avec les moteurs pour produire cette tension minimum, laissant aux moteurs l’application
de toute charge additionnelle (p. ex., pour vaincre l’inertie ou des forces extérieures appliquées
à l’effecteur). Ainsi, dans le but de restreindre au minimum la dépense énergétique des moteurs,
nous suggérons de déterminer les coefficients du polynôme associé au comportement des ressorts
pour à la fois maintenir les câbles en tension et approximer l’équilibrage statique du mécanisme
sur son espace de travail. Il est montré que ce problème peut être résolu par la programmation
quadratique. À titre d’exemple, la méthode est appliquée à un MPEC plan à deux degrés de liberté.

Mots-clé: mécanismes parallèles entraı̂nés par câbles, équilibrage statique, programmation quadra-
tique.
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1 INTRODUCTION

Nowadays, cables are used as mechanical links in devices requiring flexibility and/or where space
is limited. Over the last decade, cables have been increasingly used in robotics. Most notably, this
has led to design of a new family of mechanisms: parallel cable-driven mechanisms (PCDMs).
Conventional parallel manipulators take advantage of the possibility of fixing their active joints to
the base, thereby removing the motors themselves from the payload of the robot. The payload, (i.e.,
the inertia and the weight) can be further decreased by replacing the conventional rigid links with
cables, that is, by turning the parallel manipulator into a PCDM. This brings new advantages, such
as larger accelerations allowed through the lower inertia of the system, larger workspace, modu-
larity (a PCDM can be easily deployed) and the low-cost of the equipment. However, there are
drawbacks related to the use of cables, the main one being the unilaterality of force transmission
through cables; they can only pull and not push. Moreover, this latter constraint leads to the neces-
sity of having n + 1 cables to generate n-dof [1, 2]. Other problems are the possible interference
between the cables over end-effector trajectories, and also lower stiffness of the mechanism.

Another drawback of PCDMs, comes from the necessity to keep all cables taut at any moment
in order to preserve the geometry of the mechanism. Common practice is to control the motors
in order to optimize the tensions distribution for all the cables while ensuring a minimal cable
tension, thus preventing cable sag [3, 4]. However, preserving a minimum level of tension at all
time requires continuous power from the motors, even when no external wrench is applied on the
moving platform. Hence, it is suitable and intuitive to formulate the following question: could
this energy expenditure be provided by a passive conservative mechanical system to avoid energy
dissipation and oversizing of the electrical motors?

This paper proposes an approximate solution to this problem, which consists in adding nonlinear
springs at the (fixed) actuated joints, in parallel with the electrical motors. Hence, the method
presented in this work relies on a purely mechanical system to maintain the tension in the cables.
The nonlinear springs are selected so as to preserve a minimum level of tension in each cable, when
no external wrench is applied to the moving platform, so that the motors need only to balance out
the external loads. Hence, we want the cables to remain taut when no external load is applied,
even when the motors are turned off. In doing so, we must, however, preserve the neutral static
equilibrium of the mechanism over its workspace, to prevent the motors from having to work
against the springs when displacement is required. Now, this last requirement cannot be fulfilled
with a passive spring system based on the actuated-joint positions, at least, not in general. As a
result, our aim is to approach neutral static equilibrium over the manipulator workspace.

In summary, in this paper, we aim at determining the behavior of nonlinear springs that would
maintain the minimum required tension in the cables, while approximating static balancing of the
mechanism over its workspace. This requirement forces us to develop a different approach than
those used in [5, 6, 7, 8] for the exact static balancing of planar mechanisms, [9, 10, 11, 12, 13]
for the exact static balancing of spatial mechanisms and [14, 15] for partial static balancing, where
only some directions of motion are balanced.

For simplicity reasons, we concentrate our work on a three-cable two-dof planar parallel cable-
driven mechanism (PPCDM). Thus, the second section of this paper presents the mathematical
definition of the design problem in question. The third section shows results obtained through
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Figure 1: Kinematic modeling of the PPCDM.

the numerical solution of the ensuing optimization problem. Finally, section 4 presents some
conclusions drawn from the results of section 3.

2 MATHEMATICAL PROBLEM DEFINITION

Consider the two-dof PCDM actuated by three motors through their three corresponding cables, as
shown in Fig. 1. In this figure, vector ai represents the position of the actuated reel Ai of cable i in
the base frame, vector p represents the position of reference point P of the end effector from the
origin point O; vector ci ≡ ai − p points from P to Ai, its magnitude being the length ci of the ith

cable. Moreover, the workspace of the mechanism is A, and the length of its bounding edges is a.
Notice that the moving platform is a point, i.e., all the cables are attached at P .

Thus, at any moving-platform pose over the manipulator workspace, we want the motors to exert
torques only to balance out external wrenches, not to keep the cables taut. Therefore, the torques
exerted by the non-linear springs attached in parallel with the motors to the shaft of each reel
should maintain the PCDM in static equilibrium at any point in its workspace, when no external
wrench is applied.

Unfortunately, in general, achieving perfect static balancing (i.e., exact neutral equilibrium over
the workspace) of a PCDM with base-fixed springs is impossible. Nevertheless, one may seek and
find a set of springs that bring the PCDM “closest” possible to static equilibrium. We leave to later
the definition of “closeness to static equilibrium”.

In general, the static equilibrium conditions of a generic PCDM may be formulated as

W(tM + tS) = wP , (1)

where W is the cable-wrench matrix; tM is the array of cable tensions due to the motors; tS is the
array of cable tensions due to their associated non-linear springs; and wP is the external wrench
applied onto the moving platform.
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Here, we seek static balancing when no external wrench is applied and for no applied motor
torques. However, since we can only approximate static balancing over the PCDM workspace, we
have, in general, WtS 6= 0n over the workspace.

Therefore, closeness to equilibrium at a given pose may be measured using some norm of the
resultant wrench of the spring tensions on the moving platform. For PCDMs that generate both
rotations and translations of their moving platforms, the norm has to include weights that take into
account the dimensionally non-homogeneous nature of their associated wrenches.

2.1 Minimizing the Euclidean-norm of the resultant force fr

Here, we consider a two-dof planar mechanism that positions a point in the plane. Therefore, the
associated wrenches are pure two-dimensional forces, and we can simply use the Euclidean-norm.
Thus, our goal is to minimize the scalar tT

SWTWtS over the manipulator workspace. This last
expression is dependent upon the end-effector pose p. Hence, taking into account every possible
pose requires the integration of this function over the workspace of the mechanism.

In order to achieve the force-minimization, we use non-linear springs at the winches Ai of the
PPCDM. Hence, we model the ith spring as

ti =
k∑

j=1

sj−1c
k−j
i = fi(ci) (2)

where ti is the tension in cable i due to the spring i, sj−1 represents coefficients of polynomial and
ci is the length of the ith cable. Hence, ti is given by a polynomial of degree k − 1. For the sake of
conciseness, we may rewrite eq. (2) as

ti = γT
i s, (3)

where γi ≡ [ ck−1
i ck−2

i · · · 1 ]T and s ≡ [ s0 s1 · · · sk−1 ]T .
Since the mechanism is symmetric about axes containing the heights of triangle A1A2A3, we

have
t(c) = t1(c) = t2(c) = t3(c), (4)

namely, we use the same spring for all winches. It is noted that the scalar c in eq. (4) represents
an arbitrary length of a cable. The resultant force exerted by the cables on the end-effector may be
computed as

fr = t(c1)
c1

c1
+ t(c2)

c2

c2
+ t(c3)

c3

c3
. (5)

In general, a function is said “convex” when it follows these conditions (see [16]):

f(x) ≤ θf(x1) + (1− θ)f(x2), 0 ≤ θ ≤ 1, x ∈ [x1, x2]. (6)

Since the square of a strictly positive convex function yields a convex function with the same
minimum, we set out to minimize ||fr||22, the square of the Euclidean-norm of fr, over A, and not
||fr||2 (which are convex functions):

||fr||22 = fT
r fr =

(
γT

1 s
c1

c1
+ γT

2 s
c2

c2
+ γT

3 s
c3

c3

)T (
γT

1 s
c1

c1
+ γT

2 s
c2

c2
+ γT

3 s
c3

c3

)
, (7)
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||fr||22 = sTCTCs, (8)

where
C ≡ c1

c1
γT

1 +
c2

c2
γT

2 +
c3

c3
γT

3 . (9)

Since ci =
√

(ai − p)T (ai − p), we may write C = C(p).
Because we are to minimize the resultant-force magnitude over the manipulator workspace A,

we define the objective function as

f(s) ≡ 1

2

∫
A

sTC(p)TC(p)sdA, (10)

where dA is an infinitely small element of area. This objective function is to be minimized over
s, our set of design parameters representing the polynomial coefficients of t(c). However, because
our first goal is to achieve a minimal level of tension in each cable when no external wrench is
applied, we must submit f(s) to additional constraints to ensure positive values.

2.2 The associated constraints

The use of cables instead of rigid links limits the forces that can be applied through each leg of
the parallel manipulator. This phenomenon comes from the unilaterality of force transmission in
cables: they can only pull on the moving platform. Moreover, since we want to limit sagging in
cables, the tensions should always remain above a given threshold tmin, and this, for all cables at
any pose of the moving platform within the workspace.

Since the foregoing constraint, ti > tmin, applies to the joint force, it is more easily expressed
over the range of joint displacement, rather than the moving-platform workspace. This gives the
constraints

ti(ci) ≥ tmin, ci ∈ [0, a], i = 1, 2, 3 (11)

where a is the maximum length of any cable over the workspace.
In this way, we avoid to evaluate, at each end-effector pose, the cable lengths to verify whether

all tensions lie above the minimum value tmin. Moreover, since we use the same springs for all
winches in the mechanism, it is possible to evaluate this constraint only for one cable.

Finally, we discretize the interval [0, a] into q constraints, that is, rather than verifying the con-
straint t(c) ≥ tmin over the whole interval, we verify it q equally spaced cable lengths. The
resulting set of constraints is written as

Gs ≥ 1qtmin (12)

where matrix G is a q × k Vandermonde matrix (with reversed order of its columns due to the
application of the MATLAB® convention for polynomials), whose qth row is written as:

γq ≡ [ ck−1
q ck−2

q · · · cq 1 ]T , (13)

1q ≡ [ 1 1 · · · 1 ]T ∈ Rq, and tmin is the minimum allowed tension in all cables over the
entire workspace.

2009 CCToMM M3 Symposium 5



Equation (12) is linear regardless of the number q of different evaluated lengths of the cable of
maximal length a. Moreover, notice that the first row of G is γ1 = [ 0 0 · · · 0 1 ]T , at the
value c = 0, because we consider the positive part of the null value ((0+)0 = 1).

Notice also that these constraints act only at discrete cable-lengths. Therefore, in theory, they
do not constrain the tensions above tmin over the interval [0, a]. In practice, however, the solutions
they allow fulfill the inequality over the whole interval [0, a], provided q >> k, i.e., provided we
have many more constraints than the degree of t(c).

2.3 The Resulting Quadratic Program

We have now defined an objective function and its associated constraints that allow approximate
static balancing of the PPCDM while ensuring a minimum level of tension in its cables.

Since s is constant over the manipulator workspace, it can be factored out of the integral in
eq. (10). As a result, eq. (10) is a quadratic function of s, which we may rewrite as

f(s) ≡ 1

2
sTPs, (14)

where
P ≡

∫
A

CTCdA. (15)

In our case, the workspace is triangular, and eq. (15) can be written as

P ≡ 6

∫ a
2

0

∫ −√3x
3

−
√

3a
6

CTCdydx. (16)

In summary, we have defined the objective function (eq. (14)) which allows us to approach
static balancing of the PPCDM over its workspace, and the associated constraints (eq. (12)) which
maintain the tension in each cable above the minimum at anytime:

min
s

1
2
sTPs subject to −Gs ≤ −1qtmin. (17)

Apparently, the objective function is quadratic, the inequality constraints are affine and convex,
while there are no equality constraints. As a result, the optimization problem of eq. (17) is a
quadratic program (QP) [16], which is well-known to be a convex problem and provided that P is
symmetric positive-definite.

In general, a convex optimization problem is one of the form:

min
x

f0(x) subject to fi(x) ≤ 0, i = 1, . . . , n and Ax = b (18)

where f0, . . . , fn must be convex functions and the equality constraint functions must be affine.
Our optimization problem follows all these conditions, thus it can be defined as a convex optimiza-
tion problem.

Moreover, from eq. (16), it is apparent that P is symmetric positive semidefinite. Showing that
this matrix is symmetric positive definite in general is more difficult, and remains to be done. Nev-
ertheless, observations show that it is symmetric positive definite for 1 ≤ k ≤ 10, thus making the
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Figure 2: Tension in the cables in function of k − 1 order of springs function.

optimization problem a quadratic program in these cases. In the next section, the quadratic program
of eq. (17) is solved, using the quadprog command which pertains to the standard MATLAB® op-
timization toolbox, to determine the optimum non-linear spring function of degree (k − 1).

3 OPTIMIZATION RESULTS

Since our problem is convex [16], we can readily find the global solution s∗ associated with a given
degree k−1 of the non-linear spring function. Furthermore, let us minimize the objective function
for degrees varying from k = 1 to k = 10, define the distance a = 1 meter and constrain the
tension above tmin = 1 Newton for a number q = 10k of cable lengths. This yields the results
shown in Fig. 2.

3.1 Effect of the degree k − 1 of the polynomial

This figure shows the optimum cable tension distributions corresponding to each degree (k − 1)
of the spring behavior as a function of the cable length. The legend of the graph of Fig. 2 also
includes the corresponding minimum values of the objective function. As expected, we notice
that the minimum value of f decreases as the degree of the spring polynomial function increases.
Moreover, the constraints are always verified, since all tension distributions lie above t = 1 N.
This fact confirms that using q = 10k cable lengths to constrain the level of tension is sufficient.

Notice that maintaining a minimum level of tensions in the cables can be achieved with lin-
ear springs. Indeed, it is possible to design PPCDM using constant-tension springs (k = 1) (i.e.,
springs similar to those used in a carpenter tape) or linear springs (k = 2). However, these choices
do not yield good results when it comes to approximating static balancing of the PPCDM over
the whole workspace. Figures 3 and 4 show the magnitude of the resultant force applied on the
end effector over the workspace A, for a zero-order spring function and a first-order spring func-
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Figure 3: ||fr||2 over the workspace for a zero-order spring function (k = 1).

x(m)y(m)

||fr||2(N)

Figure 4: ||fr||2 over the workspace for a first-order spring function (k = 2).
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Figure 5: ||fr||2 over the workspace for a fourth-order spring function (k = 5).

tion, respectively. Hence, for these springs, the end-effector always tends to go back towards an
equilibrium posture corresponding to the centroid of triangle A1A2A3. The motors still have to
provide additional energy in order to maintain an arbitrary pose in the workspace, even though the
desired minimum tension in the cables is ensured by the addition of springs. In Fig. 3, only one
equilibrium point (||fr||2 = 0) is found inside the entire workspace. Increasing the degree of the
spring function by one leads to four approximate equilibrium points, as can be seen in Fig. 4.

As could be expected, Fig. 5, which corresponds to k = 5, exhibits a better approximate static
balancing of the PPCDM over its workspace. Indeed, the norm of the resultant force is closer to
zero over a considerable portion of A, and becomes larger near its boundaries. Thus, a fourth-
order spring function could be suitable to achieve our goals since, in general, the displacements
of the end-effector are far enough from the boundaries of the workspace. Nevertheless, we notice
that the Euclidean-norm resultant forces close to the winches Ai, i = 1, 2, 3, are relatively high in
comparison with k = 1, 2. Maintaining these positions could turn out to be demanding from the
motors.

Finally, Fig. 6 presents the best approximate static balancing obtained in this work. However,
considering the high order of the spring function and the light improvement of the objective func-
tion over the fourth-order spring function, one may well prefer to use a smaller degree of the spring
function. Moreover, even though the last result provides the best minimization of ||fr||2 overA, the
gain between the functions with k = 4 and k = 5 is more advantageous (fk=5 − fk=4 = −0.0076)
than that between the spring functions with k = 5 and k = 10 (fk=10 − fk=5 = −0.0035).

Notice that we use a threshold value of tmin = 1 Newton to perform our QP optimizations. Any
other positive value tmin could have been used, which would have led to very similar results.
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Figure 6: ||fr||2 over the workspace for a ninth-order spring function (k = 10).

4 CONCLUSIONS

This paper proposes the use of non-linear springs in a PCDM to maintain its cables taut and to ap-
proximate its static balancing over its entire workspace. The aim is to decrease the power required
from the electrical motors to perform arbitrary displacements of the moving platform.

The definition of the mathematical problem was first presented for a two-dof PPCDM. This
problem includes the minimization of the magnitude of the resultant force fr exerted on the mov-
ing platform over the whole workspace when no external wrench is applied while maintaining a
minimum level of tension in the cables. These requirements led to the development of a quadratic
programming that can easily be solved using readily available techniques.

Thence, the QP problem was solved for s for degrees of the non-linear springs function ranging
from 0 to 9. After analyzing the results for tmin = 1 Newton, a fourth-degree polynomial was
decided to be a suitable compromise between the order of the spring function and the objective-
function minimization.

Finally, in order to implement these theoretical results to approximate the static balancing of
a PPCDM, future works will be directed towards the determination of a suitable mechanical sys-
tem to reproduce the non-linear spring function obtained. To this end, we will evaluate appli-
cability of the method presented by Ulrich and Kumar [6], who used specific cam shapes and
linear springs to statically balance a two-dof planar serial robot. Although the baselines of their
works are different—they realize exact static balancing with no constraints on the spring force—
arrangements of cams and linear springs could be appropriate for our approach as well. Another
means of producing the desired spring functions would be to combine a linear torsion spring with
a linkage. These concepts and their implementation will be the subject of further reports.
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