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Abstract 

Because of the nonminimum phase characteristics, the end-effector trajectory 

tracking of flexible link manipulators is a challenging problem. The nonminimum phase 

feature means that, for a linearized model, the transfer function between the end-effector 

displacement and the base torque has right-hand-side zeros. The locations of these zeros 

influence the performance of the end-effector controllers, which is a novelty of this 

research work. In this paper a study of the zeros of the transfer function is performed.  It 

is shown that there are physical parameters where the increase in their values moves the 

zeros further from the imaginary axis; while by increasing the values of some other 

physical parameters the zeros move closer to the imaginary axis.  Finally, there are 

physical parameters where the location of the zeros are independent of their values.  
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1.  INTRODUCTION 

The nonminimum characteristics of flexible link manipulators have turned their 

end-effector control into a challenging problem [1]. For a slewing single flexible link 

manipulator, shown in Fig. 1, the nonminimum phase feature means that  the transfer 

function, between the base torque τ  and the end-effector displacement y, has right-hand- 

side (RHS) zeros in domain S of the Laplace transform.  

 
Fig. 1: Schematic of a slewing single flexible link manipulator 

The nonminimum phase characteristic creates several challenges in the design of 

end-effector trajectory-tracking controllers; some of these are (i)- Non-causal end-

effector inverse dynamic calculation [2] and (ii)- the dependency of the performance of 

the end-effector controllers on the location of RHS zeros [3, 4 page 265, 5,6,7,8]. Thus 
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the study of the zeros and the change in their locations due to the changes in the physical 

parameters are of great importance, which has been investigated in this paper. For this 

purpose, a single flexible link manipulator with the initial part of the link being rigid, as 

shown in Fig. 2a, is considered [9]. This manipulator is referred to as a slewing single 

rigid-flexible link manipulator (SRFLM). The reasons for introducing and studying the 

zeros of a SRFLM is that the precise modeling of an experimental single flexible link 

manipulator, like the one shown in Fig. 2b, requires that it be treated as a SRFLM. The 

initial rigid portion for this manipulator is due to the mounting brackets. 

 
Fig. 2a: The schematic of a SRFLM 

 

 
Fig. 2b: Flexible manipulator available in the Robotics Laboratory of the University of 

Saskatchewan 

After introducing SRFLM, the zeros of a SRFLM1 are found based on authors’ 

new theorem [10] which does not need deriving the corresponding transfer function. This 

theorem states that: 

Theorem: The zeros of the transfer function of a slewing single rigid-flexible link 

manipulator {SRFLM}, considering the torque at the base as the input and the 

                                                 
1 In the rest of this paper, the words “zeros of SRFLM” refer to the zeros of the transfer function of a 
SRFLM considering the base torque as the input and end-effector displacement as the output. 

Rigid Flexible 
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manipulator {SRFLM}, considering the torque at the base as the input and the 

displacement of the end-effector as the output, are the same as the zeros of the 

transfer function of the pinned-pinned counterpart of the SRFLM, considering the 

torque at the base as the input and the shear force at the end-effector (other end) as 

the output.  

That is, the zeros of the transfer function )(/)( ssYG τ=  in Fig. 2a are the same as the 

zeros of the transfer function )(/)( ssF τυ= in Fig. 3; υ  is the end-effector shear force.  

 
Fig. 3: The pinned-pinned counterpart of a SRFLM which is shown in Fig. 2a 

After having the location of the zeros, the change in the location of the zeros due 

to the changes in all the physical parameters is studied.  It was shown that the change in 

the mass of the payload and mass moment of inertia of the rigid section do not change the 

location of the zeros. However by increasing (or decreasing) the rigidity of the flexible 

section and the mass moment of inertia of the payload, the zeros move further from (or 

get closer to) the imaginary axis. Moreover by increasing (or decreasing) the mass per 

unit length of the flexible section and the lengths of the rigid and flexible sections, the 

zeros get closer to (or move further from) the imaginary axis.  

2. ZEROS OF A SINGLE RIGID-FLEXIBLE LINK MANIPULATOR  

In this paper the zeros of the SRFLM will be calculated by adopting the theorem 

given in Section introduction. That is, the SRFLM is first pinned at the end-effector as 

shown in Fig. 4, and then the zeros of the pinned-pinned counterpart of the SRFLM, 

between the base torque and end-effector shear force, are obtained.  

   
Fig. 4: Pinned-pinned counterpart of a SRFLM which is shown in Fig. 2a 
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The dynamic equation for the flexible portion of the SRFLM is: 

0),(),( =+ tzEItz zzzztt ψρψ                                                (1) 

where z  andψ  are measured from point r as shown in Fig. 4. Moreover, ρ is the mass 

per unit length of the flexible section, EI  is the rigidity of the flexible section and 

),( txtψ and ),( txxψ are the partial derivatives of ),( txψ  with respect to t and x, 

respectively, and a similar notation adopted for higher derivatives. Moreover, the 

associated boundary conditions for the pinned-pinned counterpart of the SRFLM are:  

),0(),0( tLt zrψψ =                                                             (2a) 

0),( =tL fψ                                                          (2b) 

 ),0(),0(),0( tItEILtEI zttrzzzrzz ψψψτ =−+                              (2c)        

0),(),( =+ tLItLEI fztttipfzz ψψ                                        (2d) 

where rI is the mass moment of inertia of the rigid section with respect to the base, 

tipm and tipI are the mass and mass moment of inertia of the payload, fL is the length of the 

flexible section and rL is the length of the rigid section. Eq. (2a) is due to the fact that the 

flexible section is clamped to the rigid section. Eq. (2b), shows that the flexible section is 

pinned at the end-effector. Eqs. (2c) and (2d) represent the momentum balance for the 

rigid section and the payload, respectively.  

Taking the Laplace transform of Eq. (1) leads to: 

0),(),( 4
4

4

=− sz
dz

szd ψλψ                                             (3) 

where: 

EI
s 2

4 ρ
λ −=                                                         (4) 

and ),( szψ is the Laplace transform of ),( tzψ . From Eq. (3): 

)sinh()cosh()sin()cos(),( 4321 zczczczcsz λλλλψ +++=                 (5) 

and the unknown 321 ,, ccc and 4c  are found by imposing the boundary conditions 

presented in Eqs. (2a -2d). Having ),( szψ  and also knowing that the shear force at the 

end-effector is ),(),( sLEIsL fzzzf ψυ = , the transfer function of the pinned-pinned 

counterpart of the SRFLM is:  
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where )(sN F and )(sDF are the numerator and denominator of the transfer function 

)(sF .  

 To find the zeros of )(sF  which are the zeros of a SRFLM (between the base 

torque and end-effector displacement), the condition 0)( =sN F  has to be imposed, 

which results in:  
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By assuming fLλβ = , Eqs. (4)  and (7) are respectively : 
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where 3/3
frb LI ρ= . Thus the zeros of a SRFLM, that is the values of s, are obtained from 

Eq.  (8) where β  are the roots of Eq. (9). Since SRFLM has infinite modes of vibration 

and for each mode of vibration there is a pair of zeros, the zeros of a SRFLM are infinite. 

Thus, for a given fr LL / and rbtip II / , Eq. (9) results in an infinite number of β  values.   

Remark 1: The zeros of a SRFLM were also obtained by deriving the transfer function 

)(/)( ssYG τ= of Fig. 2a and were exactly the same as those obtained from Eqs. (8) and 

(9). This comparison was a check to verify the authors’ new theorem.  

3. RESULTS AND DISCUSSIONS:  

The roots of Eq. (9) depend on the ratios rbtip II / and fr LL / . To investigate the 

effect of these ratios on the location of the zeros, Eq. (9) has to be solved numerically. To 

solve this equation, a nonlinear solver was written in MATLAB.  
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In Figs. 5 variation of the zeros for the first mode of vibration versus rbtip II / and 

fr LL /  is shown.  

 
Fig. 5a: Schematic of the zeros of the first vibration mode, ),( 11 ss−  

 

 

Fig. 5b: Variation of 1d in Fig. 5a versus rbtip II / and fr LL / ( 3/,/ 34
frbf LILEIn ρρ == ) 
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Similar trends as that in Fig. 5 exist for the zeros associated with higher modes of 

vibration which are not presented here due to space limitations.  From Eqs. (8) and (9) 

and Figs. 5 the following conclusions are drawn: 

1- The rigidity of the flexible portion, EI , does not affect the values of β  in Eq. (9). 

However, the factor 4/ fLEI ρ in Eq. (8) (n in Fig. 5b) represents the change in the zeros’ 

locations because of the change in the rigidity. Also by increasing (or decreasing) the 

rigidity of the flexible section, while all other physical parameters are constant, the zeros 

move further from (or get closer to) the imaginary axis.  

2- The location of the zeros for a SRFLM will not directly be changed by the value of the 

mass of the payload tipm . This is due to the fact that tipm did not appear in Eqs. (8) and (9) 

which determine the location of the zeros.  However, the zeros dependents on the mass 

moment of inertia of the payload tipI . This independence of the zeros to the mass of the 

payload tipm  agrees with the physical interpretation of the zeros given in [11] and has 

also been mentioned in [12] for a SFLM.  

3- From view A in Figs. 5b, it is clear that the larger (or smaller) tipI , the further from (or 

the closer to) the imaginary axis the zeros are, assuming all other physical parameters are 

constant. However, there is a saturation limit for how far (or close) the zeros will move 

away (get close to) the imaginary axis by increasing (or decreasing) tipI .   

4- The location of the zeros of a SRFLM does not depend on the mass moment of inertia 

of the rigid portion rI . This is due to the fact that rI did not appear in Eqs. (8) and (9) 

which determine the location of the zeros.  For the SFLM of Fig. 1 this means that the 

location of the zeros does not depend on the mass moment of inertia of hub hI .  

5- From View B in Figs. 5b, it is clear that the larger (or smaller) rL , the closer to (the 

further from) the imaginary axis the zeros are.  

6- The larger (or smaller) fL , the closer to (the further from) the imaginary axis the zeros 

are. It is to be noted that this conclusion cannot be drawn from Fig. 5 since by 

changing fL , all ratios fr LL / , 4/ fLEIn ρ= and rbtip II / will change. However, the 

variation of the zeros of the first mode shape of a SRFLM, shown in Fig. 6 versus rf LL / , 

clearly indicates this conclusion. In Fig. 6  by changing fL only the ratio rf LL /  will be 
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changed. To draw Fig. 6, Eqs. (8) and (9) were rearranged and solved as detailed in 

Appendix I. 

 

Fig. 6: Variation of 1d   versus rf LL /  ( 3/,/ 34
rrigr LILEIr ρρ == ) 

7- The larger (or smaller) the mass per unit length of the link ρ , the closer to (or the 

further from) the imaginary axis the zeros are. This conclusion can easily be drawn from 

Fig. 7. This figure was obtained from Figs. 5b with the details provided in Appendix II.  

 

Fig. 7: Variation of 1d  versus ρ  ( 3/3,3/ ftiprefftip LILIEIp == ρ  

4. CONCLUSIONS 

A slewing single rigid-flexible link manipulator (SRFLM) is considered. For the 

first time, it was shown that the physical parameters of a SRFLM fall into three 

categories with regard to changing the location of the zeros, which is the main 

contribution of this work.  The first category was composed of the mass moment of 

inertia of the rigid section and the mass of the payload. In this category no change in the 

location of zeros will occur by changing these physical parameters. The second category 
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was composed of the mass moment of inertia of the payload and the rigidity of the 

flexible portion, whereby increasing (or decreasing) these physical parameters the zeros 

move further from (or get closer to) the imaginary axis. The third category are the 

physical parameters, whereby increasing (or decreasing) their values the zeros get closer 

to (or move further from) the imaginary axis. These physical parameters are mass per unit 

length of the flexible section and the lengths of the rigid and flexible sections. Finally it 

was observed that there is a limit for how far (or how close) the zeros can move away (or 

get close) to the imaginary axis by increasing (or decreasing) the mass moment of inertia 

of the payload, while all other physical parameters are constant.  
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APPENDIX I: REARRANGING EQS. (8) AND (9) TO OBTAIN FIG. 6 

The variable δ is defined as: 

  rLλδ =                                                            (A1) 

Therefore, form (A1): 

rL
δλ =                                                                (A2) 

Substituting λ  From Eq. (A2) in Eqs. (8) results in: 

4
42
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δ−=                                                                    (A3) 

Moreover substituting λ  From Eq. (A2) in Eq. (9) leads to: 
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      (A4) 

where 3/3
rrig LI ρ= . Therefore, the zeros of a SRFLM, the values of s, can be obtained 

from Eq. (A3) where δ  has to be found by solving Eq. (A4).  

 To obtain Fig. 6, Eq. (A4) was first solved forδ  versus rf LL / and assuming that 

rigtip II /  is constant. Then the obtained values of δ were substituted into Eq. (A3) and 

plotted versus rf LL / .  

APPENDIX II: OBTAINING FIG. 7 FROM FIG. 5b  

            In Figs 7, the graphical relation between nd / versus rbtip II / and fr LL /  is 
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presented. This graphical relation can be represented as: 
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n
d

Λ=                               (A5) 

where 1Λ  is the functions which is schematically shown in Fig. 5b. Multiplying both side 

of Eq. (A5) with rbtip II /  yield to: 
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Λ=                         (A6) 

By using the definition of 4/ fLEIn ρ=  and 3/3
frb LI ρ= , the left hand side of Eq. (A6) 

changes to: 
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tip 11 =                                      (A7) 

where ftip LIEIp 3/= . Moreover, by using the definition 3/3
frb LI ρ= , the ratio
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=                                                       (A8) 

where 3/3 ftipref LI=ρ . Combining Eqs. (A6), A(7) and (A8) results in: 

),(1 ρ
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rrefi

L
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p
d

Λ=                                   (A9) 

For different constant values of fr LL / , the variation of iΛ versus ρρ /ref  is given in 

View A of Fig. 5b (Note that from Eq. (A8) ρρ // refrbtip II = ). By multiplying the values 

of 1Λ at each ρρ /ref  (given in View A of Fig. 5b ) with ρρ /ref  the right hand side of 

Eq. (A9) was obtained. Consequently pd /1 , left hand side of Eq. (A9), could be plotted 

versus ρρ /ref  as presented in Fig. 7.  


