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Abstract 
In underwater remote vehicle-manipulator system (URVM ) applications, it is beneficial to have the 
underwater remote vehicle (URV) hold station using its thrusters while a human pilot operates the serial 
manipulator. This provides a stable platform for the manipulator and eases the pilot’s job drastically when 
current and/or tether disturbances are present. In this work, the reduction of dynamic coupling in the 
URVM systems is realized using two robust control techniques namely Sliding-mode control and H∞ 
control, and the performance of both controllers in the dynamic coupling reduction problem is reported. 
In addition, a new control scheme is proposed that involves both controllers in the control loop. 
Numerical case studies are developed to demonstrate the effectiveness of the controllers. It is concluded 
that sliding-mode and H∞ controller combined approach provides superior dynamic coupling reduction 
performance. 
 
Résumé 
Pour des applications de systèmes de manipulateur-véhicule sous-marin télécommandés (MVST), il est 
bénéfique que le véhicule sous-marin télécommandé (VST) maintienne sa position avec ses propulseurs 
tandis qu’un pilote humain actionne le manipulateur sériel. Cela fournit une plate-forme stable pour le 
manipulateur et facilite grandement la tâche du pilote en présence de perturbations dues au courant et/ou 
au cordon ombilical. Dans ce travail, une réduction du couplage dynamique dans les systèmes MVST est 
réalisée en utilisant deux méthodes de commande robustes, soit la commande par mode de glissement  et 
la commande H∞. La performance des deux systèmes de commande pour la réduction du couplage 
dynamique est présentée. De plus, une nouvelle approche qui comprend les deux systèmes dans la boucle 
de commande est proposée. Des études de cas numériques sont développées afin de démontrer l’efficacité 
des systèmes de commande. Il est conclu que l’approche combinant la commande par mode de glissement   
et  la commande H∞ offre une performance supérieure pour diminuer le couplage dynamique.  

 



 

 

1 INTRODUCTION 

In many URV applications, a master-slave configuration is used to operate the manipulator. In this 
configuration, the movement of the smaller master arm driven by an operator on a surface support vessel, 
is approximately duplicated by the larger slave arm relative to the URV frame of reference  [1]. However, 
when the movement is replicated by the larger-slave arm, a force is exerted on the vehicle through 
dynamic coupling. Since the end effector’s position and orientation are a function of accumulated URV 
motions, this disturbance of the URV state adversely affects the end-effector position and orientation; the 
slave arm end-effector does not achieve the same final state as the master arm  [1].  Nonlinear 
hydrodynamic effects dominant the coupled vehicle-manipulator dynamics and the hydrodynamics vary 
greatly with changes in arm and vehicle orientation  [2]. Consequently, reducing the negative effect of the 
dynamic coupling present in the URV manipulator system through the use of on-board controllers 
becomes a significant issue in obtaining better system performance  [3]. 

Several control methods have been applied to control URV motion. Yoerger and Slotine  [4] applied 
Slotine’s  [5] sliding-mode methodology to the control problem of the URV. In  [4], a series of single-input 
single-output controllers were used, and the robustness of the control scheme was demonstrated. Cristi et 
al.  [6] proposed a control technique that combines the robustness property of the sliding-mode controller 
with the adaptivity of an adaptive controller. Yuh  [7] demonstrated the application of neural networks to 
an underwater robotic control system, and concluded that a neural network controller provides a robust 
control technique in case the exact dynamic knowledge is not available. Dunnigan and Russel  [8] 
addressed the dynamic coupling problem for URVM systems, and proposed the sliding-mode approach in 
an effort to keep a URV stationary.  The sliding-mode control methodology was also utilized to solve the 
URVM dynamic coupling problem in [8] in which an accurate dynamic coupling prediction required 
inertial measurement units for monitoring the URV motion. In  [9], the Articulated-Body Algorithm 
(ABA) predicted the dynamic coupling force expressions based on the feedback of the URV and the 
manipulator states.  It was shown in the same paper that using the ABA not only eliminates the need for 
an inertial sensor, but it also produces better dynamic coupling reduction performance.  

The H∞ approach is applied in  [10] to the problem of precise trajectory controlling.  To this end, the 
nonlinear system dynamics were linearized around an operating point, and standard techniques of H∞ 

theory [11] were applied. Conte and Serrani  [12] proposed a scheduling of linear H∞ controllers, and 
simulation studies were carried out for a broad range of operating conditions. They showed that the H∞  
approach provides a robust control technique for the control of underwater vehicles. In  [13], Conte et al. 
considered the problem of decoupling the effect of the umbilical’s traction from the position of a URV. It 
is shown in  [13] that the full disturbance decoupling is theoretically not possible within the H∞ controller 
synthesis theory. However, the almost disturbance decoupling was proved to be theoretically realizable in 
the same work.  An H∞ autopilot design for an autonomous underwater vehicle is presented in  [14].  The 
design of sub-controllers is formulated as the problem of minimizing the mixed sensitivity function, and 
is solved by the Linear Matrix Inequality (LMI)-based H∞ method.  In  [15], the same problem was solved 
using reduced-order H∞ synthesis that produces reduced-order controllers with slight performance 
degradation compared to LMI-based controllers.   

The primary goal of the current proposed research is to compare the ability of sliding-mode H∞ 

controllers to attenuate the dynamic coupling in URVM systems, and to propose a control scheme that 
combines the two controller methodology to further improve the controller performance.  

2 MODELLING 

2.1 Vehicle Modelling with Newton-Euler Dynamics 

The general kinematics characteristics of the URVM system are presented below. 



 

 
Figure 1: URVM system. 

As shown in Figure 1, the Z axis of the earth-fixed inertial frame {E} is assumed in the gravity 
direction as is consistent with traditional marine mechanics. The URV is modeled as another manipulator 
link in the serial chain and numbered as 0. The body-fixed frame is attached to the centre of mass of the 
URV as shown in Figure 1. The URV spatial velocity state vector with respect to (wrt) its body-fixed 
frame is considered to be 1 2 [ ]Tp q r u v w[ ]v v Τµ = =µ = =µ = =µ = =  and the position and orientation state 

vector of the URV wrt the inertial frame is given by [ ] .=x TX Y Zφ θ ψ  The spatial 

transformation matrix between the inertial frame and URV’s body-fixed frame is given by T 6 6×∈ℝ , 
which includes the angular velocity transformation matrix and the linear velocity transformation matrix. 
The term T can be obtained by the Euler sequence of rotations  [16]. 

The nonlinear equations of motion of the URV in terms of its body-fixed frame are obtained by 
applying a Newton-Euler dynamics formulation: 

 (((( )))) (((( ))))M C D G x Tµ + µ µ + µ µ + = = µµ + µ µ + µ µ + = = µµ + µ µ + µ µ + = = µµ + µ µ + µ µ + = = µɺ ɺɺ ɺɺ ɺɺ ɺτ, τ, τ, τ,  (1) 

where 6 6M ×∈ℝ  is the inertia matrix including the added mass effect, 6 6C ×∈ℝ  is the Coriolis matrix that 
results from the use of a local frame attached to the URV, 6 6D ×∈ℝ  is the damping matrix, 6G ∈ℝ is the 
gravity matrix, and finally 6∈ℝττττ  is the force and moment vector acting on the system including thrusters 
forces, tether forces and the manipulator disturbance forces.  The definitions of these terms can be found 
in  [16]. 

2.2 Linearized Model 

To be able to implement H∞ control theory, the nonlinear system must be linearized around a specific 
operating point.  To this end, the linear model can be obtained by linearization of the general expression 
given in Eq. (1).  Since our main goal is to keep the URV stationary in the presence of the disturbances, 
the operating point or equilibrium point must be 0.  The linearization process around the operating point 
of 0 yields the following linear time-invariant (LTI) system  [16]: 
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Eq. (2) can be written in a compact form as follows: 
 A +Bu=ɺξ ξξ ξξ ξξ ξ  (3) 

To complete the linear model, the output of the system can be given as: 
 y C=∆∆∆∆ ξξξξ  (4) 



 

3 CONTROL 

3.1 MIMO Sliding Mode Control 

A multi-input multi-output model-based sliding mode controller allows using one centralized 
controller instead of many, i.e., one for each controlled axis. The centralized controller coordinates the 
URV motion in such a way that the desired task is accomplished.  

The design of a sliding mode control follows two main steps.  First one designs a switching surface s 
to represent a desired system dynamics, then a control law u 6∈ℝ  is designed that drives the system states 
on to the switching surface s 6∈ℝ  in a finite time and keeps them on the surface until they hit the desired 
location on the surface in spite of parameter changes and disturbances  [5].  

The vector of sliding surfaces s is defined as: 
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where ϒ 6 6×∈ℝ  is a positive definite matrix containing the control bandwidth value for each sliding 
surface, BI R 3 3×∈ℝ  is the rotation matrix from the inertial frame to the body-fixed frame, and the rest of 
the terms in Eq. (5) are defined as with subscript d denoting the desired values: 
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T T
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The following control law is implemented based on the work of  [17]. 

 ( )† ˆ ˆˆ ˆ ( )u B K s Mr C D r G K s/D ssat = + + + + + Φ
 

ɺ  (7) 

where †B  is the pseudoinverse of matrix B, K D
6 6×∈ℝ  is a positive definite matrix of gains, M̂ , Ĉ , D̂  

and Ĝ  are the estimates of inertia matrix M, the vector of Coriolis and centripetal acceleration C, the 
vector of dissipative effects, and gravitational and buoyant force G, respectively. The term K s

6 6×∈ℝ  is a 

positive definite matrix, and ( )ssat  is the saturation function [16].  
Theorem 1: Consider the nonlinear dynamical system described by Eq. (1). If the control law is 
expressed as Eq. (7) then stability of the closed-loop control system is guaranteed in Lyapunov sense with 
1 2 Ts Ms being a Lyapunov function candidate. 
Proof: See Antonelli  [17].  

3.2 H∞ Control Design 

A typical feedback system is demonstrated in Figure 2 in which K is the controller, G is the system 
that is to be controlled, and d is a disturbance.  The term r represents the reference input that is supposed 
to be tracked by the system, e is the error between the reference input and the system output, and finally u 
is the control input produced by the controller K. 
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Figure 2: Feedback control loop. The input disturbance force is given by d. 

H∞ design software programs usually require the system to be expressed in a so-called interconnection 
system, which is the state-space representation of the augmented system.  Such a structure can be easily 



 

obtained by adding the performance weighting functions WP that captures the closed-loop performance 
specifications (minimum bandwidth frequency, maximum steady state error, and maximum peak 
magnitude) and robust weighting function Wr that characterizes the known frequency dependent 
knowledge of the modelling uncertainty  [11]- [18].  The resulting the feedback control loop and the 
augmented plant P are demonstrated in Figure 3. 
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Figure 3: Feedback control loop (left) and Augmented plant P (right). 

So the augmented plant P from [ , ]w u T to [ , ]z v T  is 
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where 1 2[ ]z z z T=  with 1z upw=  and 2z Gurw= , [ ]w r d= , v w Gu= −  and  
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 The major goal of the H∞ design method is to minimize the effect of the worst-case disturbance w on 
the output z. The cost function to be minimized is defined as the transfer function between w and z, and is 

expressed as ( ) 1

11 12 22 21T P P I P K KPzw
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In Eq. (10) γ  is a constant called nominal performance bound that represens the desired performance 
level of the closed-loop system and the terms S and T are called the sensitivity function, and 
complimentary sensitivity function, respectively  [18].   The H∞ design process seeks a controller K such 
that the closed-loop gain Tzw is minimized in the sense of the H∞ norm while maintaining internal 

stability.  That is, ensure Tzw γ
∞

<  where the term γ  represents the achievable performance level of the 

closed-loop system for a given set of controller design constraints, and is the result of the optimization 
problem of min Tzw ∞

  [11].  



 

 Consequently, the problem definition can be given as ( )( )supT Tzw zw jω σ ω
∞

=  where Tzw ∞
 is 

called the mixed-sensitivity cost function, ( ).σ is the maximum singular value and supω  implies 

supremum, or least upper bound  [11].  
In the H∞ framework, the desired controller performance is given as frequency domain specifications 

on the various closed-loop transfer functions. These frequency domain specifications form design 
constraints on the gain response of the closed-loop transfer functions within the H∞ control problem.   The 
procedure of defining the frequency domain specifications such as tracking performance, disturbance 
rejection, roll-off, robustness to model uncertainty is called loop shaping [11].  The performance 
specification and the robustness specification require the following inequalities to hold: 

 (((( ))))(((( )))) (((( )))) (((( ))))(((( ))))( ) 1, 1S Tp rj w j j w jσ ω ω σ ω ω≤ ≤≤ ≤≤ ≤≤ ≤  (11) 

These performance and robustness specifications can be lumped into the following infinity norm 
inequality: 
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as a result of the following inequalities: 
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3.3 Weighting Function Selection 

In the current work, the performance weighting function for the control system was chosen based on 
the work of  [14] as: 

 (((( ))))10 10 1000 1pw l l= + += + += + += + +  (14) 

with l  indicating the Laplace domain. This choice leads the steady state error to be below 1%.   
The robustness weighting function rw  represents the bound on this uncertainty term.  It is assumed 

that the neglected high frequency dynamics cause as much as 40 dB deviation between the frequency 
response of the linearized model and the actual system for frequencies over 0.5 Hz.  This requires 
40dB/dec attenuation after 0.5Hz.  The robustness bound satisfying the said conditions was chosen to be: 

 2 10rw l====  (15) 

Note that although rw  is improper, the augmented plant is proper since ( ) ( )Grw j jω ω  is proper, and 

that it does not lead to an ill-conditioned state matrix in the realization of the augmented plant P  [11].  

3.4 Solution Procedure 

For synthesis of the H∞ control, transfer matrix G in Eq.(8) is replaced by ( )-1
C sI-A B +Dl l l l

, which is the 

transfer matrix of the linear model given in Eqs. (3)-(4).  The weighting functions are defined based on 
the design specifications.  There are two common approaches to solve the problem of the minimization of 
the cost fuction, i.e., min Tzw ∞

; the Riccati-Based and the LMI-based.   The LMI-based H∞ control 

theory  [19] will be utilized to synthesize the controller since it applies directly to singular plants. This is 
the case for our system since the eigenvalue analysis reveals that the linearized model of the vehicle has 
poles at the origin.   



 

4 SIMULATION RESULTS 

4.1 System Overview 

These two controllers were applied to the full nonlinear plant, and their performances in the 
attenuation of the dynamic coupling were evaluated.  The URVM system considered in this work is 
Canadian Scientific Submersible Facility (ROPOS)  [20], and all the associated parameters used in this 
simulation study are given in  [20].  The current ROPOS system does not involve manipulators, and hence 
manipulators from  [21] were used instead; these manipulators were chosen due to the similarities in 
dimensions of their vehicles and the vehicles used in the ROPOS system.  In the simulation, a station 
keeping task is considered for the URV whose initial orientation and position vector is zero.  Likewise, 
the initial configuration of the manipulator is also taken as zero.  A randomly selected torque vector of 

[ ]40 0 0τ = Nm, which corresponds to the pilot’s true desire during task execution and could be any 

value, is applied for 60 seconds. No joint displacement limit is considered in the current simulation study.  
The applied torque vector creates constant disturbance to the URV motion through reaction forces and 
moments at the junction point between the URV and the manipulator, and in turn causes changes in the 
position and orientation of the URV.  These effects leads to the reduction of task effectiveness, and must 
be compensated for in order to obtain better system performance in underwater robotic applications.  The 
compensation of the reaction forces and moments will be given by controllers.  In underwater 
applications, these compensation forces and moments are applied to the system by means of thrusters.  
For the thruster dynamics, a simplified first-order model of the thrusters was implemented.  The first-
order dynamics successfully model the lag between the controller’s commanded thrust and the actual 
thrust through a time-constant term. The dimensionless time constant term is considered to be 0.07. This 
value successfully reflects the time lag behaviour of conventional thrusters and is determined based on 
trial and error. In addition, it will be assumed that commanded thrusts are applied directly to the center of 
mass of the URV.  In order to model uncertainties in the dynamics parameters, drag and added mass 
coefficients of the URV differed from the real system by 20%.  Success of the controller in the presence 
of these parameter perturbations will partly address the issue of controller robustness. MatLab Simulink 
software was used to perform the simulation. As an integrator, ode15s is used.  

To predict the reaction forces and moments at the junction point, the ABA   [22] algorithm  is used in 
the simulation studies.   

4.2 Sliding-Mode Control 

MIMO sliding-mode controller has been synthesized based on Section  3.1.  The control law 
parameters were chosen by trial and error to be:[0.5 0.5 0.5 0.5 0.5 0.5]Tϒ =  and 

[10 10 10 10 10 10]K T
D = . Differently from the general approach in which control parameter 

K S is taken as constant, in the current implementation of the MIMO sliding-mode controller, the term 

K S is updated using SVD (Singular Value Decomposition) so that the convergence condition given in 
 [17] is guaranteed to be satisfied by the sliding-mode controller during task execution.   Boundary layer 
parameter Φ  has been set to 0.2 to prevent the chattering problem. 

Dynamic simulations were performed for 60 seconds, and the reaction forces and moments occuring at 
the junction point between the vehicle and the manipulator are demonstrated in Figure 4. The MIMO 
sliding-mode controller tries to compensate these disturbance forces and moments by commanding the 
thrusters. Figure 5 demonstrates the commanded forces and moments at the center of mass of the URV.  

Figure 6 reveals the controller performance in keeping the vehicle still.  From Figure 6, it can be 
concluded that the MIMO sliding-mode control technique provides satisfactory station-keeping 



 

performance since the position and orientation error of the URV under the disturbance of the manipulator 
motion is small. 
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Figure 4: Forces and moments occur at the connection point due to the manipulator motion. 
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Figure 5: The compensation forces and moments 
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Figure 6:  Above two plots demonstrate the URV’s translational motion along X, Y and Z axis with respect to the 
earth reference frame with the sliding mode controller off and on, respectively.  These two graphs are also 
equivalent to the position error of the URV, as zero is the reference value for each degree of freedom of the URV. 



 

4.3 H∞ Controller Synthesis 

The H∞ control technique was applied to the dynamic coupling reduction problem under the simulation 
parameters as the previous section.  To this end, the dynamic coupling term is included into the general 
problem setting of H∞ design as outlined in Section  3.4.  MatLab’s LMI Control Toolbox  [23] was used to 
solve the derived LMI equation, Eq (10), through the augmented plant given in Eq. (8).  The performance 
specifications were enforced through the weighting functions defined in Section. 3.3.  The LMI Control 
Toolbox found an optimal 6-input/6-output controller of 17th order for given design specifications with 
nominal performance bound γ = 0.2955. 

Figure 7 shows the translational and rotational position error for the H∞ controller. Figure 7 reveals 
that H∞ control synthesis yields a controller that provides satisfactory station-keeping performance. From 
the figure, it can be concluded that the sliding-mode controller gives slightly better performance in the 
attenuation of the dynamic coupling effect compared to the H∞ controller.    
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Figure 7: Position and orientation error of the URV due to the manipulator disturbance forces and moments. 

4.4 Sliding-Mode - H∞ Controller 

In order to further improve the disturbance rejection capability, the two approaches can be combined.  
The proposed feedback control scheme is given in Figure 8.  
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Figure 8: Proposed H∞ -Sliding-Mode control scheme. 

In this proposed scheme, there are two loops.  The inner loop consists of the sliding mode controller, 
the disturbances and the URV dynamics and the outer loop consists of an H∞ controller.  In the inner loop, 
the low-level sliding mode controller works to drive the state of the nonlinear URV system towards the 
equilibrium state of 0.  Therefore, the high-level H∞ controller works on a system whose dynamics model 
is more consistent with the linearized model used to synthesize the H∞ controller. 

Figure 9 demonstrates the position and orientation error of the URV under the manipulator 
disturbance.  As can be seen from the figure, the combined H∞-Sliding-Mode controller gives very 
satisfactory results in keeping the URV’s location at zero.   



 

In order to evaluate each controller performance with respect to each other, one should evaluate the 
Euclidean norm of position and orientation error for each controller.  Figure 10 reveals that the combined 
H∞-Sliding-Mode controller outperforms the other two controllers.  When the area underneath each curve 
in Figure 10 is considered, the combined H∞-Sliding-Mode controller improves the position and 
orientation error as much as 35% and 47%, respectively, compared to the sliding-mode controller alone, 
and 49% and 49% compared to the H∞ controller alone.   
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Figure 9: Position and orientation error of the URV due to the manipulator disturbance forces and moments for the 
combined H∞ -sliding-mode controller. 
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Figure 10: Euclidean norm of position and orientation error for each controller. As can be seen form the figure that 
the combined H∞-Sliding-Mode controller outperforms the other two controllers. 

5 CONCLUSION 

The contribution of this work is twofold.  Firstly, the implementation of H∞ technique to the problem 
of dynamic coupling reduction in URVMs, and its application to the disturbance mitigation problem is 
considered to be a unique contribution.  Secondly, a new control scheme consisting of a combined 
sliding-mode and H∞ controller has been presented. A comparison case study has been developed to 
evaluate the performance of each controller in the dynamic coupling reduction problem. Results have 
demonstrated that the combined H∞-Sliding-Mode controller outperforms the other two controllers. This 
improvement can be attributed to the fact that, the high-level H∞ controller works on a system whose 
dynamics model is more consistent with the linearized model used to synthesize the H∞ controller due to 
the low level sliding-mode controller. Although the performance evaluation of each controller has been 



 

performed exclusively for the dynamic coupling reduction problem, the proposed control scheme can be 
easily extended to other URV problems such as waypoint navigation. 
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