
Length-Optimized Smooth Obstacle Avoidance for Robotic Manipulators

Soheil S. Parsa1, Juan A. Carretero2, Roger Boudreau3

1 Department of Mechanical Engineering, University of New Brunswick, s.parsa@unb.ca

2Department of Mechanical Engineering, University of New Brunswick, juan.carretero@unb.ca
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Abstract
This paper presents a novel optimised smooth obstacle avoidance algorithm for robotic manipu-
lators. First, a 3-4-5 interpolating polynomial is used to plan a smooth trajectory between initial
and final positions in the joint space without considering any obstacles. Then, a simple harmonic
function, which is smooth and continuous in displacement, velocity and acceleration, is applied to
generate a new smooth path avoiding the obstacles. The obstacle avoidance portions on the path
are optimised such that the length of the path traversed by the end-effector is minimised. Simula-
tion results for a 6 DOF serial manipulator demonstrate the efficiency of the proposed method.

Keywords: Robotic Manipulator, Trajectory Planning, Smooth Obstacle Avoidance, Joint space
method.

Trajectoire continue à distance minimale pour manipulateurs

Résumé
Cet article présente un nouvel algorithme pour générer des trajectoires continues en évitant des
obstacles pour un manipulateur robotique. Un polynôme 3-4-5 est utilisé pour planifier une tra-
jectoire entre la position initiale et la position finale sans considérer les obstacles. Une fonction
trigonométrique continue en déplacement, en vitesse et en accélération est ensuite utilisée pour
générer une nouvelle trajectoire qui évite les obstacles. L’évitement d’obstacles est optimisé pour
minimiser la distance parcourue par l’organe terminal. Des résultats de simulation avec un manip-
ulateur sériel à 6 degrés de liberté démontrent l’efficacité de la méthode proposée.

Mots-clé: Manipulateur robotique, Planification de trajectoire, Evitement d’obstocles,
Méthode articulaire.
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1 INTRODUCTION
Trajectory planning for robotic manipulators deals with finding a path between the initial and final
positions of the end-effector. The designed path needs to be as smooth as possible; i.e., abrupt
changes in displacement, velocity and acceleration have to be prevented. Although smooth mo-
tions can be produced through relatively simple methods, there is no guarantee that no sudden
changes occur in the case of obstacle avoidance. Ambike and Schmiedeler applied curvature the-
ory to track a path for a 2-degree-of-freedom (DOF) planar manipulator [1]. Dash et al. proposed a
numerical method to generate the reachable workspace of parallel manipulators and for determin-
ing the singular points [2]. They also presented a method to find an optimal path over the reachable
workspace. Zhou et al. investigated the capability of singularity free path generation for five-bar
slider-crank parallel manipulators [3]. Bhattacharya et al. introduced a method for path planning
for parallel manipulators and constrained the manipulator in a single branch to avoid the singularity
barriers [4]. Dasgupta and Mruthyunjaya developed an algorithm to generate continuous trajec-
tories in the workspace while avoiding the singularities [5]. Merlet proposed an algorithm which
verifies whether a straight line between the initial and final positions of a parallel manipulator is
inside the workspace or not [6].

Much research has been undertaken to solve the obstacle avoidance problem for robots (e.g., [7,
8, 9]). Unfortunately, the majority of the developed obstacle avoidance algorithms apply to mobile
robots. Also, most of the proposed algorithms implement the free-of-obstacle workspace for the
manipulator which dramatically decreases its reachable workspace. Another important issue to
consider in the obstacle avoidance problem is the sudden changes in joint acceleration when the
pre-designed path has to be changed for collision avoidance. For instance, abrupt changes in
acceleration generate infinite jerk spikes which is known to decrease the life of the manipulator’s
actuators.

In [10], a 3-4-5 polynomial was used to plan a trajectory in joint space between an initial and a
final position. Then, a harmonic function which is continuous and smooth in displacement, velocity
and acceleration was applied to modify the pre-designed joint trajectory to avoid obstacles in the
Cartesian space. According to the obstacle avoidance algorithm by Parsa et al., the acceleration
of actuators changes smoothly during the obstacle avoidance section. Here, a similar strategy is
used with the addition of an optimization strategy to minimize the length of the end-effector path
in the Cartesian space. That is, the method looks at minimizing the end-effector’s traversed path
during the obstacle avoidance section. To illustrate the method, the proposed strategy is applied
to an obstacle avoidance task with a 6 DOF serial manipulator and the results are compared to the
strategy without the optimization.

2 TRAJECTORY PLANNING
For the proposed algorithm, a 3-4-5 interpolating polynomial is used to design a trajectory in joint
space [9]. Since the applied polynomial can be differentiated twice, the displacement, velocity
and acceleration vary continuously. This joint-based polynomial interpolation method only needs
the initial and final conditions for every joint position, velocity and acceleration. Considering the
number of boundary conditions, the interpolating polynomial method is studied with the aid of a
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fifth-order polynomial S(τ). That is:

S(τ) = aτ 5 + bτ 4 + cτ 3 + dτ 2 + f (1)

where a, b, c, d, e and f are constants and are found through the boundary conditions of the desired
motion.

To simplify the calculations for each of the joints, the polynomial in equation (1) is normalized,
that is,

τ =
t

T
and 0 ≤ S ≤ 1

where t is the actual time, in seconds, T is the time the manipulator takes to fulfil the entire task,
and τ is a non-dimensional time parameter (i.e., 0 ≤ τ ≤ 1).

As a result, the polynomial representing the evolution of joint j with respect to the non-dimen-
sional time parameter τ is considered as:

θj(t) = θIj + (θFj − θIj )S(τ) (2)

where θIj and θFj are the initial and final positions of joint j (j = 1 . . . n, the number of active
joints) obtained by solving the inverse displacement problem on the initial and final end-effector
positions, respectively.

In a typical pick and place operation, where conditions of zero end-effector velocity and accel-
eration at the trajectory’s end points need to be satisfied, the velocity and acceleration at each joint
are also equal to zero at the start and end of the operation. Consequently, with these boundary
conditions set, equation (1) can be written as:

S(τ) = 6τ 5 − 15τ 4 + 10τ 3 (3)

In order to design a smooth path between the initial and final points, the total time is first
determined. This is often done by considering joint velocities and/or accelerations never exceeding
some maximum threshold while applying the equations to the joint with the largest displacement
and/or the joint with the smallest velocity or acceleration limits. Once time T is defined for a
specific trajectory, sets of joint values which represent the joint displacements are generated using
equations (2) and (3).

Although, the 3-4-5 polynomial trajectory planning methods described above yields a smooth
path between the initial position to the final one, there is no guarantee that collisions are avoided
throughout the trajectory. This turns this method into an unreliable approach when the manipula-
tor’s workspace has obstacles.

3 SMOOTH OBSTACLE AVOIDANCE
Since the trajectory planning method described above may only meet two specific Cartesian po-
sitions without collision (namely the initial and final position), there is a need to modify the pre-
designed trajectory when obstacles are present. This could be done by re-defining the trajectory in
the Cartesian space (using via points for instance [11]). However, depending on the number of via
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points used, the resulting polynomial required could be of high order thus producing undesirable
oscillations.

Here, as it was done in [10], continuity in the joint trajectories is guaranteed by adding the
value of a smooth and continuous function to the pre-designed 3-4-5 joint trajectory. The smooth
function is a set of harmonic equations that describe cam motion and consist of four quarter-
cycloidal equations as follows:

S �(τ �) =

�

τ � −
1

π
sin πτ �

�

, 0 ≤ τ � ≤ 1 (4)

S �(τ �) =

�

τ � +
1

π
sin πτ �

�

, 1 ≤ τ � ≤ 2 (5)

S �(τ �) =

�

4− τ � +
1

π
sin πτ �

�

, 2 ≤ τ � ≤ 3 (6)

S �(τ �) =

�

4− τ � −
1

π
sin πτ �

�

, 3 ≤ τ � ≤ 4 (7)

Also,

τ � =
t�

T �
(8)

where t� is the time in seconds during the obstacle avoidance portion of the trajectory and T � is the
total time during this portion, set here at T � = 4.

Initially, the preliminary trajectory is designed in the joint space without considering any ob-
stacles and the joint trajectory is broken into small time steps. Then, the Cartesian position of
the end-effector is calculated in every time step by solving the forward displacement problem.
Thereafter, the distance between the end-effector and the obstacles is calculated and a collision is
verified. If a potential collision is detected, the joint trajectory equation changes as follows:

θj = θIj + (θFj − θIj )(S(τ) + ρS �(τ �)) (9)

where ρ is a constant that determines the magnitude of the added joint displacement and is chosen
considering the dimensions of the obstacles in the manipulator’s path. In [10], the value of ρ is
chosen based on experimentation and its values are the same for all the path generator equations in
joint space.

This modified trajectory is applied to one or more joints. Note that the method is designed to
have the trajectory return to the original pre-designed trajectory after avoiding the obstacles. This
method avoids any abrupt changes in displacement, velocity and acceleration in the joint space
during the change of the pre-designed path due to the obstacle avoidance sub-task.

4 PATH LENGTH OPTIMIZATION
The obstacle avoidance algorithm proposed in [10] guarantees smooth changes in acceleration
while the pre-designed trajectory is changing to avoid obstacles and that is maintained through
equation (9). However, the pre-designed trajectory of each of the joints may not need to be altered
since the motion of the manipulator is a function of the displacement of all joints. Thus, it may not
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be necessary to add the same modifier term ρS �(τ �) to the path generator equations of all joints.
Instead, it is proposed to independently set ρj as the amplitude for the modifier function for joint j
thus turning equation (9) into

θj = θIj + (θFj − θIj )(S(τ) + ρjS
�(τ �)) (10)

where the values of ρj are chosen carefully in a way that the total traversed path of the end-effector
remains as short as possible because reducing the path length in Cartesian space results in less
displacement in joint space and consequently less energy consumption.

Therefore, the proposed algorithm considers minimizing the end-effector path length in the
Cartesian space while imposing constraints on the end-effector path. These two problems may be
solved by formulating a constrained optimization problem. The search variables in this case are
all amplitudes ρj while the objective function to be minimized is defined as the end-effector tra-
versed path during the obstacle avoidance section. The constraints are established as to maintain
the robot’s end-effector at least at a pre-defined safe distance away from the obstacles in the envi-
ronment. In other words, the amplitude ρj in equation (10) changes for each joint j to maintain the
minimum traversed path in Cartesian space. The objective function of the optimization algorithm
is written as follow:

min p− p0 (11)
s.t. d ≥ a

where p0 is the path length of the pre-designed path when no obstacle is present while p is the
length of the current path. Note that p0 is fixed once the path is given but p is a function of the
design variables θi and ρj . Also, d is used to quantify the shortest distance between the end effector
and the object in the environment. Of course, d is a function of the design variables and is to be
maintained with a value greater than a used-defined threshold a.

The proposed method is applied for a 6-DOF serial manipulator (n = 6) in the next section and
the results are compared to those from the method proposed in [10].

5 NUMERICAL EXAMPLE
A serial MELFA RV-1A manipulator, whose joints are all rotational, is presented in Figure 1 and
is used to demonstrate the results of the proposed algorithm. Since the MELFA RV-1A has 6-
DOF while the task is only considered to be 3-DOF in Cartesian space (the orientation of the
end effector has not been considered in the simulation while all the six joints of the manipulator
maintain the motion of the end-effector), it is considered as a redundant manipulator for the task.
The manipulator’s geometric parameters are established using Craig’s notation [11] for the Denavit
and Hartenberg (DH) parameters (Table 1) from which the forward displacement solution can be
obtained . A smooth path is designed between arbitrary initial and final positions using equation (2)
for T = 15 s. The Cartesian position of an obstacle which can be detected via cameras or other
sensors is presented to the trajectory planning algorithm. Then, the distance between the end-
effector and the obstacle is measured in every time iteration to determine the hazardous region.
The path generator equation changes to equation (10) if the robot tip gets close to the obstacle.
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Table 1: DH parameters [11] of the MELFA RV-1A 6 DOF serial manipulator.
i αi−1 (rad) ai−1 (mm) di (mm) θi

1 π 0 150 θ1
2 0 250 0 θ2
3 π 90 43 θ3
4 π 0 117 θ4
5 π 0 72 θ5
6 0 0 90 θ6

Figure 1: MELFA RV-1A [13]

Thereafter, the modified path planning algorithm designs a new path which avoids any collision
between the robot tip and obstacles. Also, equation (10) returns to equation (2) once the end-
effector passes the obstacle (S �(τ �) = 0). As mentioned earlier, the modifier function (S �(τ �))
range remains constant (T � = 4) and only the amplitudes ρj changes to achieve a path which has
the minimum length during the obstacle avoidance algorithm.

In the current Matlab implementation, a constrained nonlinear multi-variable optimization al-
gorithm native to Matlab’s optimization toolbox is used (namely, function fmincon). This function
uses sequential quadratic programming with Hessian updates [12]. The objective function sums
the distance between the end-effector position at time = t relative to its position at time = t− 1
for the entire trajectory. The optimization problem is constrained to remain away from the obsta-
cle. For simplicity, in the present case, the obstacles are ellipsoids represented only by their major
semi-axis.

Figure 2 illustrates the obstacles and the initial trajectory in Cartesian space, denoted as pre-
designed, when obstacle avoidance is not considered. The optimized and the non-optimized paths
are also shown. The obstacle avoidance algorithm is capable of avoiding collisions both with
and without implementing the optimization method. However, the end-effector traversed distance
in the Cartesian space is significantly different when the optimization algorithm is implemented.
The end-effector path length with the obstacle avoidance algorithm is 560 mm when no amplitude
optimization is performed while this length decreases down to 373 mm when the proposed opti-
mization algorithm is applied (the objective function is constrained to keep the end-effector away
from the obstacles by at least 100 mm).
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Figure 2: End-effector trajectory in the Cartesian space.

The changes in acceleration are shown in Figure 3. It is clear from there that in either case, the
joints’ acceleration change smoothly and continuously during obstacle avoidance. The displace-
ments for all six joints of the manipulator is shown in Figure 4 where the joint displacements are
shown to be smooth and continuous during obstacle avoidance. It can also be noted that the joint
displacement decreases noticeably for most joints while the optimized method is implemented. As
another indication of the deviation from the original path, Figure 5 shows the difference between
the end effector position and the two collision free paths (optimized and non-optimised paths) and
the pre-designed path.

6 CONCLUSION

A simple and efficient joint-space method for obstacle avoidance was proposed. This method yields
smooth and continuous changes in actuators displacement, velocity and acceleration while chang-
ing the pre-designed trajectory for collision avoidance. By providing trajectories with smooth and
continuous joint acceleration profiles, the actuator life time is maximized as infinite jerk spikes are
eliminated. Finally, the end-effector path length has been minimized which decreases the the joints
displacements as well as energy consumption.

In future work, the authors plan to consider collisions between the manipulator links and the
obstacle. The constraint in equation (12) would have to take into account the distance between the
end-effector and the obstacle, as well as the shortest distance between each link and the obstacle.
Moreover, additional constrains could be added to ensure that the trajectory avoids certain types of
singularities.
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Figure 3: Joint accelerations.
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