
Graphics Processing Units for Trajectory Planning of Kinematically Redundant
Manipulators

Brendan C. Wood1, Juan A. Carretero2

1 Department of Mechanical Engineering, University of New Brunswick, b.wood@unb.ca

2Department of Mechanical Engineering, University of New Brunswick, Juan.Carretero@unb.ca

Abstract
GPU programming is introduced with specific attention to its use in engineering computation. GPU
programming is put in context against traditional sequential programming and parallel program-
ming strategies. One practical example of GPU programming in engineering is provided, with a
discussion of the achieved speedups and suggestions for how to increase speedup further. A gen-
eral approach for parallelising engineering problems is presented, and guidelines for maximising
performance are given.

Keywords: GPU computing, general purpose graphics computing, parallel computing, engineer-
ing design, engineering analysis, path planning, kinematic redundancy.

Processeurs Graphiques Utilisés pour la Planification des Trajectoires des Manipulateurs
Redondents

Résumé
La programmation sur des processeurs graphiques (GPU) est présenté avec une attention partic-
ulière à son utilisation dans les calculs d’ingénierie. La programmation sur les GPU est comparée
à la programmation séquentielle et les stratégies traditionnelles de programmation parallèle. Un
exemple pratique de la programmation sur les GPU en génie est fourni, avec une discussion sur
les accélérations obtenues. Quelques suggestions pour augmenter des vitesses computationelles
supplémentaire sont aussi fournies. Une approche générale pour aider la formulation en parallèle
des problèmes d’ingénierie est présentée, et règles générales pour optimiser leur performance sont
donnés.

Mots-clé: processeurs graphiques, calcul générique sur processeurs graphiques, calcul parallèl,
conception en génie, analyse en génie, planification des trajectoires, redondance cinématique

2011 CCToMM M3 Symposium 1



1 INTRODUCTION

As modern engineering problems are becoming more complex, computer-aided engineering is be-
coming increasingly ubiquitous and it is more important for engineers to use computational tools
efficiently and effectively. Engineering simulation and optimisation techniques are computation-
ally intensive, which typically become more expensive with increasing precision or problem size.

Maximising computational performance is a difficult optimisation problem itself. Recently,
new tools for improving performance have become available – namely, graphics processing units
(GPUs). Using these new tools, however, is not easy for engineers who have relatively little back-
ground in computer programming. In fact, if one is only familiar with traditional programming
methods, then GPU programming will require a complete paradigm shift.

The purpose of this paper is to introduce GPU programming from an engineering perspective
and place GPUs in a historical context with respect to more traditional computational methods. We
then present an example of an engineering problem that requires a large amount of computation
to solve, and report on efforts to parallelise3 its computation for use on a GPU. In particular, the
example in this paper is overall path planning for a 3-RPRR manipulator.

The rest of the paper is organised as follows. Section 2 provides an introduction to engineering
computation, discussing traditional software practices, the advent of parallel computing, and finally
how GPUs fit into the picture. Section 3 presents the overall motion planning problem, which
exhibits a high degree of data parallelism, and discusses two strategies for its implementation on a
GPU. Section 4 considers the results of the two implementation strategies, explains the differences
between them, and presents a general approach that can be taken to attempt parallelisation of
other problems. Finally, Section 5 provides conclusions and outlines potential future directions for
investigating the implementation of engineering simulation problems on GPUs.

2 ENGINEERING COMPUTATION

Computational fluid dynamics (CFD) and finite element analysis (FEA) are two of the most com-
mon and well-known simulation techniques used in mechanical engineering, and also have a very
large computational cost. These methods involve solving large systems of equations simultane-
ously, which is a major component of the computational cost. Another computationally intensive
method typically used in engineering design and analysis is numerical optimisation. Optimisation
algorithms attempt to minimise or maximise a particular objective function by finding the opti-
mal combination of values for its variables. For objective functions that are expensive to evaluate
(requiring a complete system simulation, for example), these optimisation algorithms run into the
same computational cost problems as large simulations.

There are four ways in which one can increase the speed of a computation.

1. Reformulate the problem with simplifying assumptions or a less computationally-intensive
model.

2. Reprogram the software in a lower-level language and a more efficient manner.
3To parallelise a problem is to reformulate it such that there are several independent sub-problems that can be

solved in isolation of each other. Describing a problem in this way allows for multiple agents to work on the problem
simultaneously without significant overlap. This word, and all its variations in this paper, refer to this concept.

2011 CCToMM M3 Symposium 2



3. Parallelise the algorithm so that multiple systems can share the workload simultaneously.

4. Wait for microprocessor technology to advance and produce faster processors.

Reformulation is not always feasible if the model has already been validated or is the only way
in which to achieve a particular level of precision and accuracy. Reprogramming more efficiently
or in a faster language is an excellent option, but will not yield much improvement if the software
is already well-coded or written in a low-level language such as C.

The truth is that there is no magic bullet for increasing performance, but considerable gains
can be made through combinations of the four approaches mentioned above. Of these four steps,
parallelisation is the only method that theoretically allows for unlimited speedup in the short-term.
As long as the algorithm is appropriately parallelisable, the attainable speedup is only bounded by
the resources one is willing to devote to building a parallel computer.

2.1 Traditional Approach

Traditional programming is limited to sequential algorithms. Instructions are executed individually
in a specified order, even if subsequent instructions are independent of previous. The sequential
orientation of traditional programs is due to the way that traditional processors worked. Each
processor contained only a single processing core, which was only capable of executing a single
instruction at a time.

Improving performance of sequential programs can be achieved through steps 1, 2, and 4 as
outlined in Section 2. Once steps 1 and 2 have been exploited, the only traditional option is to wait
for more advanced processors. At this point, it is no longer possible to scale to larger problems
without devoting more time or sacrificing precision.

2.2 Parallel Computing

As stated in [1], “the basic driving force for parallel processing is the desire and prospect for
greater performance.” This is achieved through division of the workload in a manner such that
several processors or systems can work together on the same problem simultaneously. For a highly
parallelisable algorithm, this allows for enormous speedup dependent on the number of processors
available. This speedup can be used to either reduce the overall computation time or tackle larger
problems.

In the past, multi-processor systems have been characterised by large computer clusters with
hundreds or even thousands of independent processing units linked together by a communication
network to co-ordinate workflow [2]. As with standard single-core processors, performance im-
provements were driven by the development of faster processors by microprocessor manufacturers,
such as Intel, AMD, and Motorola.

More recently, however, microprocessor manufacturers have run into physical limitations re-
lated to energy consumption and heat dissipation for individual processing cores, and such dra-
matic increases in performance over time as characterised by Moore’s Law are no longer possible
for individual processor cores [3]. Manufacturers have instead begun placing multiple processing
cores on individual processors. These cores operate independently of one another and special pro-
gramming techniques are required to utilise them more effectively. In many cases, it isn’t even

2011 CCToMM M3 Symposium 3



feasible to divide a program’s execution across multiple cores.
It is beyond the scope of this paper to discuss the foundations of parallel computing in-depth,

but the interested reader may refer to [2].

2.3 Graphics Processing Units

A graphics processing unit (GPU) is a type of processor that specialises in high-throughput com-
putations that exploit data parallelism. Due to their specialised design, GPUs are theoretically
capable of achieving significantly higher performance than their central processing unit (CPU)
counterparts. According to Kirk and Hwu in [4], the peak floating point performance for GPUs
can be ten times higher than that of multi-core CPUs. To be clear, this is an overly simplified
comparison and does not necessarily translate into real-world results, but it still demonstrates the
potential of GPUs. On the other hand, there has also been recent work to characterise the existence
of a GPU-CPU performance gap as a myth [5].

GPUs are really a type of parallel processing unit that can have up to hundreds of processor
cores, which can be programmed to work together on a problem. However, parallel programming
is significantly more difficult than traditional sequential programming and it’s not always possible
to parallelise a particular algorithm [1]. Maximum speedup can be estimated by Amdahl’s Law [6],
which is dependent on the ratio of the size of the parallelisable portion of the program to the
necessarily sequential part. There are several types of parallelism which may be exploited in
parallel programming, but GPUs are best suited to data parallelism, in which a large number of
identical independent calculations are to be performed on different elements of one or more data
sets. In particular, GPUs are designed to leverage “massive” data parallelism, involving thousands
or even millions of identical independent calculations [7]. The processing cores in modern GPUs
are organised into groups called streaming multiprocessors, or SM units for short. On the NVIDIA
Fermi architecture, each SM unit contains 32 cores.

Due to the nature of data parallelism, some problems are well-suited for GPU acceleration,
while many others are not. Even some problems which exhibit perfect data parallelism may not
be worthwhile parallelising on a GPU. In engineering simulation and optimisation, however, there
are often opportunities to exploit data parallelism. Monte-Carlo methods, evolutionary algorithms,
finite element modelling, computational fluid dynamics, and molecular dynamics are all excellent
candidates for parallelisation.

One important point to make about GPUs is that they specialise in single-precision floating
point operations, rather than the double-precision commonly used on CPUs. If high precision is
important in calculations (as it often is with engineering simulation work), it is possible to use
double-precision on GPUs, but performance is approximately halved on the latest architecture.
GPUs specialise in single precision due to their typical use in computer graphics and gaming, in
which high precision is not usually required [4]. For a more detailed look at GPUs, Owens et al.
present a comprehensive introduction in [8].

3 EXAMPLE APPLICATION

This section presents the problem of motion planning for a kinematically redundant planar parallel
manipulator (the 3-RPRR manipulator), which is used as an example of the parallelisation process.

2011 CCToMM M3 Symposium 4



The purpose of this example is to provide a practical demonstration of the concepts covered in this
paper, and motivate discussion of the difficulties associated with parallelisation.

3.1 Hardware and API

There are several application programming interfaces (APIs) that can be used for programming
modern GPUs, but they are all similar from conceptual, functionality, and performance standpoints.
They are all implemented in C/C++ or an extended version thereof. For this research, CUDA (the
API from NVIDIA) was chosen due to its maturity and availability of documentation. It should
be noted that these parallelisation examples are still very basic in nature and do not yet exploit
some of the more advanced optimisation techniques on GPUs that can be used to further increase
performance. For example, this software makes no use of shared memory on the SM units nor does
it coalesce global memory accesses or manually unroll loops [9].

Each of the problems below are implemented in C on the CPU as a performance baseline, and
acceleration is attempted using CUDA on the GPU. The specifications for the test system are as
follows:

• AMD Athlon 64 X2 5000+

• 4GB DDR RAM

• NVIDIA GeForce GTX 465 at 1.25GHz, 1GB RAM (352 processing cores)

• Ubuntu Linux version 10.10

• NVIDIA display driver version 260.19.29

It is important to note that, at the time of this writing, the GPU is relatively new and on the
medium to high-end of GPUs while the CPU is already is in the low to mid-end of the performance
spectrum [10].

3.2 Overall Motion Planning for a 3-RPRR Manipulator

The 3-RPRR parallel manipulator is a planar kinematically redundant parallel mechanism proposed
by Ebrahimi et al. [11] inspired by the work of Gosselin et al. in modelling the non-redundant 3-
PRR [12]. Due to the kinematic redundancy, there are infinite solutions to the inverse displacement
problem for most points within the reachable workspace. This redundancy allows for optimisation
of joint trajectories based on a particular criterion, such as obstacle avoidance [13] or kinematic
singularity avoidance [11]. As shown by Carretero et al. [14], this optimisation can be achieved via
a differential evolution technique [15] and an appropriately formulated objective function. The cri-
terion used here is singularity avoidance by attempting to maximise the normalised scaled incircle
radius (NSIR) along an entire trajectory defined by a set of control points.

The objective function is quite large, with each evaluation requiring the inverse displacement
problem to be solved a number of times, and the NSIR (non-dimensional measure of proximity to
kinematic singularities [11]) calculation requiring determinants of matrices, LU decomposition of
matrices, and matrix rank computation, among other things. The complete code for evaluating the

2011 CCToMM M3 Symposium 5



A1

A3

A2

B1

B2B3

l2l3

l1

D1

D3

D2

X

ρ 3

ρ1

ρ 2

θ2

θ1

θ3

φ

α1

α2
α3

Y
P

ψ1 ψ2

ψ3
r2

r1

r3

O

Figure 1: The 3-RPRR planar 6-DOF kinemati-
cally redundant parallel manipulator [11].

A1

A3

A2
D1

D3

D2
B1

B2B3

T1

T2

T3

Figure 2: Incircle of the triangle created by
the collinear lines passing through the distal
links of the 3-RPRR manipulator [11].

objective function in C is approximately 1200 lines in length, containing many loops and function
calls. This is not necessarily a true indication of complexity (total floating point operations would
be more appropriate), but it provides a sense of scale for this example.

3.2.1 Architecture and Kinematics
The three degrees of kinematic redundancy (DOKR) provided by the 3-RPRR allows the manipu-
lator to avoid all direct kinematic singularities, while also improving dexterity and increasing the
size of the reachable and dexterous workspaces [11]. The architecture can be seen in Figure 1.

Ebrahimi et al. discuss the kinematics in detail in [11]. The inverse displacement problem is
treated by modelling the branches with vector loop equations. The vector loop equation for branch
i can be written as:

DiBi = DiAi + AiO +OP + PBi (1)
l2i = (−ρicθi − xAi

+ xp + ric(φ+ψi))
2 + (−ρisθi − yAi

+ yP + ris(φ+ψi))
2 (2)

l2i = x2
li
+ y2li = (licαi

)2 + (lisαi
)2 (3)

where c] and s] represent cos] and sin], respectively, while x∗ and y∗ represent the x and y
coordinates (or components) of point (or vector) ∗. All other parameters are defined in Figure 1.

Ebrahimi et al. develop the Jacobian matrices Jx and Jq to model the direct and inverse kine-
matic singularities, as follows:

Jx =

l1cα1 l1sα1 l1r1s(α1−φ−ψ1)

l2cα2 l2sα2 l2r2s(α2−φ−ψ2)

l3cα3 l3sα3 l3r3s(α3−φ−ψ3)


3×3

(4)

Jq =

u1 v1 0 0 0 0
0 0 u2 v2 0 0
0 0 0 0 u3 v3


3×6

(5)

2011 CCToMM M3 Symposium 6



where ui = cθiai1 + sθiai2 and vi = −ρisθiai1 + ρicθiai2 with ai1 = xp − xAi
− ρicθ1 + ric(φ+ψi)

and ai2 = yp − yAi
− ρisθ1 + ris(φ+ψi).

3.2.2 Proximity to Singular Configurations
Proximity to a singular configuration can be measured using the normalised scaled incircle ra-
dius (NSIR) [11]. As explained below, this measure accounts for proximity to direct and inverse
kinematic singularities.

In the 3-RPRR manipulator, direct kinematic singularities occur when lines collinear to the
distal links of the mechanism meet at a common point. When they do not meet at a common point
(and are also not parallel), the intersections of the collinear lines form a triangle, within which
a circle is inscribed. A diagram depicting this can be seen in Figure 2. As the radius r of the
incircle approaches zero, the mechanism approaches a direct kinematic singularity. Conversely,
the incircle is at its largest rmax when it passes through all three attachment points of the distal
links to the end-effector (i.e., point Bi), so it is possible to normalise the size of the incircle to be
independent of manipulator size and frame or reference:

rnorm =
r

rmax
(6)

Proximity to inverse kinematic singularities can be measured in terms of the magnitude of the
inverse Jacobian. As the incircle, this can be bound by its maximum value. That is:√∣∣JqJq

T
∣∣ =

3∏
i=1

li

√
(c(αi−θi))

2 +

(
ρi
ρmax

s(αi−θi)

)2

(7)

√∣∣JqJq
T
∣∣
max =

3∏
i=1

li (8)

Therefore,

ξ =

√ ∣∣JqJq
T
∣∣∣∣JqJq

T
∣∣

max

(9)

is a quantity between zero and one that shows the proximity to inverse kinematic singularities.
Combining the measures in equations (6) and (9) one obtains

N = ξrnorm (10)

which is the normalised scaled incircle radius (NSIR), a non-dimensional quantity bound between
zero and one.

3.2.3 Algorithm
For a given trajectory of the 3-RPRR end-effector in Cartesian space, a corresponding trajectory
must be generated in the joint space for each of the active joints. Due to the three DOKR of the
3-RPRR, there are infinite solutions to the inverse displacement problem for every position along
the end-effector trajectory. Therefore, the trajectory can be optimised for a particular criterion.

Carretero et al. [14] describe an algorithm to find appropriate trajectories in the joint space, as
follows:

2011 CCToMM M3 Symposium 7



1. Find the locus of inverse displacement solutions for the given trajectory for each actuated
joint. In this case, there are two actuators per kinematically redundant limb (KRL).

2. From the locus of inverse displacement solutions for each end-effector pose, determine the
range of motion of all actuators for each KRL.

3. Select one of the actuators of each KRL as the optimisation variable. In this case, the pris-
matic joint ρi for each KRL is selected.

4. Choose an initial set of values for the n+ 1 control points (CPs) for each KRL.

5. Connect the n + 1 CPs with n line segments to create the polyline approximation of the
actuator trajectory.

6. Verify if any point along the polyline violates the actuator boundaries. If so, replace the
infeasible actuator values with the corresponding boundary values.

7. Discretise each line segment of the polyline into N points and calculate the profile for the
optimised actuator of each KRL, and then calculate the other actuators’ profiles.

8. Compute an objective function at each discretised point along the entire trajectory. In this
case, the objective function to minimise is the proximity to singular configurations.

9. Using an optimisation algorithm, find the optimal location of the n CPs. Steps 5 through 8 are
repeated every time the objective function is calculated. In this case, differential evolution is
the optimisation algorithm used to determine the optimal location of the control points.

This algorithm is parallelisable in several aspects. Differential evolution is a population-based
global search metaheuristic, in which the individual mutation, crossover, and objective function
evaluations are independent calculations which can be performed in parallel. Generations, how-
ever, must be executed in a serial fashion because each offspring population is formed by recom-
bination of the parent population. At the population level, this is an example of “embarrassing
parallelism”. Using this scheme, a population of n candidate solutions can be broken into n iden-
tical independent calculations to be run in parallel for each generation. The objective function
(described in Section 3.2.4) itself is also parallelisable, so it is possible to reformulate the objective
function to expose more degrees of parallelism.

For this example, the differential evolution is parallelised at two levels: that of the population,
and that of the objective function itself. The formulation and performance of these two approaches
are compared in Sections 3.2.5–3.2.7.

3.2.4 Objective Function
Motion planning for a given Cartesian trajectory of the end-effector is optimised for singularity
avoidance. For a coarse trajectory of control points in the joint space that allow the end-effector
to follow the given Cartesian trajectory, a number of intermediate via-points are interpolated. The
NSIR N is computed at each of these via-points, and are finally reduced to a single scalar value
for use as fitness in the differential evolution algorithm.

2011 CCToMM M3 Symposium 8



As mentioned above, the NSIR must be calculated for each discretised point along the trajectory,
and these are combined to compute an overall metric for the entire trajectory. This is computed as
follows:

F = N̄Nmin (11)

where N̄ is the average value of N for the entire trajectory, Nmin is the minimum value, and F is
the final value of the objective function for the candidate trajectory. This encourages the trajectory
to have a high N on average, while also ensuring that no individual via-point on the trajectory is
too close to a singularity.

3.2.5 Population-level Parallelism
At the population level, the number of threads is equal to the number of candidate solutions in
the population. Large populations in differential evolution correspond to larger population iner-
tia, which result in slower population convergence, which is not always desirable. In this case,
Carretero et al. have shown that a population of size 100 will frequently converge to the global
solution solution after only a few hundred generations, so a population of several thousand will
likely make convergence more difficult. This is too few threads to take full advantage of a GPU
with multiple SM units, so the program has been written to execute on only a single SM unit out of
the available eleven (the GTX 465 has a total of 352 cores). Therefore, if there were reason enough
to scale the population size to use all SM units, or reconfigure the program to evolve eleven distinct
populations independently, the run-time would be roughly the same.

3.2.6 Objective Function Parallelism
The objective function is itself parallelisable due to the NSIR calculations along each candidate
trajectory. In the present case, 21 control points are used for each leg, which was the number at
which Carretero et al. reported no further increase in solution quality. The 21 control points are
linearly interpolated to provide further precision in calculating the NSIR over the trajectory. This
interpolation results in 121 via-points for the entire trajectory, which corresponds to 121 NSIR
computations. These computations are independent of one another and form the bulk of the work
in the objective function. Therefore, the objective function evaluations for each generation can be
split into 121 × n threads, where n is the number of candidate solutions in the population. This
provides more than enough threads to satisfy all SM units of the GPU at one time.

The evolution parameters are as follows: population size of 128, 1000 generations as a stopping
criterion, 63 design variables, crossover ratio of 0.7, and a mutation scaling factor of 2.0.

3.2.7 Results
Carretero et al.’s original version of this algorithm was coded in Matlab. On the test computer used
for these examples, it takes approximately 140 minutes to evolve through 1500 generations with a
population size of 100. This is far too slow for planning a manipulator trajectory, so the algorithm
was ported to a lower level language, namely C, and later parallelised for the GPU in an attempt to
speed up the process.

The C version of the algorithm running on the CPU provided a speedup of 72 over the Matlab
code. This is not very surprising, considering the significant overhead associated with interpreted
languages versus compiled languages and Matlab’s pass-by-value approach to memory manage-

2011 CCToMM M3 Symposium 9



0 100 200 300 400 500
Generation

0.00

0.05

0.10

0.15

0.20

0.25

Fi
tn

es
s

Average fitness [CPU]
Best fitness [CPU]
Average fitness [GPU]
Best fitness [GPU]

Figure 3: Best and average of CPU and GPU populations by generation

ment. The speedup of interest is that of the GPU with respect to the CPU version written in C.
Using only the population-level parallelism on one SM unit (i.e., only 32 out of 352 on the GTX
465), the GPU achieves a speedup of 4.2, without including any advanced GPU optimisation tech-
niques. Parallelizing the objective function to take advantage of all SM units increases the speedup
to 10.5.

As is shown in Figure 3, both the GPU and CPU converge to the same global solution, but the
GPU optimisation converges about 100 generations earlier than the CPU. Both execute the exact
same algorithm and use precisely the same pseudo-random generator, and the difference seen here
is due to differing initial seed. The CPU could have just as easily found the solution earlier than
the GPU.

To test the assertion that the GPU should be able to scale to a population eleven times larger with
very little change in run-time, a population of size 1408 is evolved on the GPU and its run-time
is compared to the original population. Though the amount of computational work has increased
eleven-fold, the run-time has only increased by a factor of 1.3. Even with 1408 threads, the GPU
still is not operating at its full potential.

4 DISCUSSION

Using a finer grain of parallelism resulted in higher performance for the example in Section 3;
the difference is that more threads allowed a more complete utilisation of the GPU. Though the
population-level implementation used only one out of eleven SM units, the parallelised objective
function did not achieve eleven times the performance. This is because the division of work for
splitting the objective function was not perfectly parallel, and required a larger memory usage.
There are more variables to consider than the number of threads, though that is arguably one of the
most important parameters.

As GPUs become more powerful and acquire more processing cores in the coming years, this
problem will become more important because more threads will be needed at any given time to
saturate the GPU. In the interests of developing scalable software that will benefit from advances
in GPU technology, it would be prudent to consider algorithms that have the potential to generate
hundreds of thousands of threads, or more. Simulation problems that produce more useful results
as a function of problem size are excellent candidates, because they will scale more easily with
GPUs and there will always be a reason to scale further and generate more threads. For example,

2011 CCToMM M3 Symposium 10



a contact dynamics simulation could produce more threads by modelling more bodies simultane-
ously, while a fluid dynamics simulation could increase precision or include more realistic effects.

This paper has just scratched the surface of GPU computing, and all techniques presented are
just the first steps towards maximising performance of GPUs. A quick summary is as follows:

1. Choose an algorithm to consider parallelising.

2. Analyse the algorithm for repetitive calculations, such as loops or matrix operations.

3. Estimate how many identical independent calculations need to be performed for typical use.

4. Consider the amount of work involved in each independent calculation.

5. Based on Steps 3 and 4 above, is there enough parallelism to justify implementing?

6. If so, begin implementation and try to find a balance between number of threads and work
assigned per thread.

7. Test the GPU implementation against equivalent C code on the CPU. Is there good speedup?

8. Play with the execution configuration to find a good combination of parameters.

9. If further optimisations are desired, consider making use of shared memory in the kernel,
coalescing global memory accesses, increasing data locality, changing register usage, and
looking for other ways to improve performance.

The last step may sound simple, but in practice its implementation can be difficult as current
APIs do not do this automatically. There are trade-offs at every turn, where changing one param-
eters for the better may negatively affect others. Finding an excellent execution configuration is a
significant optimisation problem itself, and there is a bit of an art to it. Hands-on experience will
make it easier.

5 CONCLUSIONS

Using GPUs for engineering computation is a promising avenue that has the potential to accelerate
the pace of engineering. For highly parallelisable algorithms, GPUs offer the possibility of massive
scalability, beyond the abilities of a single sequential processor. The computer industry is rapidly
shifting from multi-core (i.e., less than a dozen cores) processors to many-core (i.e., hundreds of
cores), and the old practices in engineering computation are becoming obsolete.

Future work will involve investigating methods of fine-tuning parallel algorithms on GPUs, and
developing heuristic rules to ease their application. Since fine-tuning is such a difficult problem,
the feasibility of automating parts of the process will also be studied.

This paper has presented a short introduction to parallel programming on GPUs, with practical
engineering examples to solidify concepts. The key point to take away is that producing good
parallel software is significantly more difficult than producing sequential software, and should be
approached intelligently. It is comparatively easy to produce a first version of a parallel algorithm
on a GPU, but it is much more difficult to effectively use all the processing power that GPUs
provide.

2011 CCToMM M3 Symposium 11



REFERENCES
[1] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin-Cummings Publishing

Co., Inc., Redwood City, CA, USA, 1989.

[2] Thomas Rauber and Gudula Rünger. Parallel Programming for Multicore and Cluster Sys-
tems. Springer, 2010.

[3] D. Geer. Chip makers turn to multicore processors. Computer, 38(5):11–13, May 2005.

[4] David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel Processors. Morgan
Kaufmann, 2010.

[5] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D.
Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund,
Ronak Singhal, and Pradeep Dubey. Debunking the 100x GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU. SIGARCH Comput. Archit. News, 38:451–460,
June 2010.

[6] M.D. Hill and M.R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33–38, 2008.

[7] Michael Garland and David B. Kirk. Understanding throughput-oriented architectures. Com-
mun. ACM, 53:58–66, November 2010.

[8] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips. GPU computing.
Proceedings of the IEEE, 96(5):879–899, May 2008.

[9] NVIDIA. CUDA C Best Practices Guide, version 3.2 edition, 2010.

[10] PassMark Software. PC benchmark and test software. http://www.cpubenchmark.net/, last
accessed: January 15, 2011.

[11] I. Ebrahimi, J. A. Carretero, and R. Boudreau. Kinematic analysis and path planning of a new
kinematically redundant planar parallel manipulator. Robotica, 26(3):405–413, May 2008.

[12] C.M. Gosselin, S. Lemieux, and J.-P. Merlet. A new architecture of planar three-degree-of-
freedom parallel manipulator. In Proc. of Int. Conf. on Robotics and Automation, 1996, V. 4,
pp. 3738 –3743.

[13] Y. Nakamura. Advanced robotics: redundancy and optimization. Addison-Wesley, Reading,
Massachusetts, USA, 1991.

[14] J. A. Carretero, I. Ebrahimi, and R. Boudreau. A new motion planning strategy for kine-
matically redundant parallel manipulators. In Proc. of the 2008 CCToMM Symposium on
Mechanisms, Machines, and Mechatronics / 2008 CSME Forum, Ottawa, May 21-23 2008.

[15] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. of Global Optimization, 11(4):341–359, Dec. 1997.

2011 CCToMM M3 Symposium 12


