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ABSTRACT

The actuation of conventionally fixed linkage parameterhsas the moment of inertia can enhance the
system dynamic performance. Recently, the idea of integtalndancy was introduced which is considered
as variation of link geometry and may contribute in some s&severcome the limits of the robot’s actuator.
This paper investigates the effects of adding a portables toethe distal link of the 3-RR planar manipu-
lator which is allowed to trace a square-shaped trajectdtty ounded corners. The proposed method uses
the manipulator's dynamic model to actively optimize theation of the redundant masses at every point
along the trajectory to improve the dynamic performancéefrhanipulator while sorting a trajectory with
sharp corners. Numerical examples are shown to supporti¢iae i

Keywords: internal redundancy; parallel manipulator; dynamic miigl square-shaped trajectory; opti-
mization.

REDUCTION DES COUPLES D’UN MANIPULATEUR 3-RRR PLAN SUIVANT UNE
TRAJECTOIRE CARREE

RESUME

L'actionnement de paramétres qui sont normalement fixegsragsbres, tels que le moment d'inertie,
peut améliorer la performance dynamique d’'un systéme. den@ance interne a récemment été proposée
pour modifier la géométrie des membres et ainsi pallier anidtions de I'actionneur du robot. Cet article
examine les effets de I'addition d’'une masse déplacablelagque membre distal d’'un manipulateur 3-RRR
plan lorsqu’il suit une trajectoire carrée avec des coimeralis. La méthode proposée utilise le modéle
dynamique du manipulateur pour optimiser la position dessesredondantes a chaque point le long de la
trajectoire et ainsi améliorer la performance dynamiquenadmipulateur lorsqu’il suit une trajectoire avec
des virages brusques. Des exemples numérigues sont @®sent

Mots-clés : redondance interne ; manipulateur parallele ; model dygaenj trajectoire carrée ; optimisa-
tion.
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1. INTRODUCTION

Parallel manipulators have been widely used in the maruractindustry where continuous paths have
to be followed with high tracking accuracy. These tasksudelwelding, laser cutting, assembly and debur-
ring, to name a few. Unfortunately, manipulators may suifem tracking error when the trajectory has a
sharp corner. More specifically, when the manipulator apghes a sharp corner, the acceleration changes
drastically which requires large torques from the actigat@onsequently, the sharp corner trajectory turns
to a rounded corner trajectory since the maximum torqueettituators is limited. The effects of internal
redundancy are investigated here when tracking a shargrcorn

Redundancy in parallel manipulators is normally dividetb ikinematic redundancy, actuation redun-
dancy and branch redundancy [1-5]. Actuation redundanogists of replacing passive joints with active
ones [2, 6-8] where the number of degrees-of-freedom orlityobf the manipulator does not change. Al-
though actuation redundancy can help either eliminatedarae singular configurations, issues such as force
interference make the manipulators more complex to anatiegsign and control [9, 10]. The second type
of redundancy is called branch redundancy where an extnatact branch is added to the manipulator [11].
Branch redundancy can improve the force capabilities ofrthripulator and reduce the number of singular
configurations. The third type of redundancy is called kingoredundancy where active joints and links are
added to one or more branches of the manipulator [3, 12].t¥p&sof redundancy can enhance the dexterity
of the manipulator as well as enlarge its workspace. Adultiiy, kinematic redundancy allows to follow
trajectories choosing configurations that are far fromisgconfigurations since the inverse displacement
problem has an infinite number of solutions [13].

Redundant parallel manipulators have been widely usedpoowe the trajectories of parallel robots. For
instance, Chat al. [14] showed that kinematically redundant manipulatons efiectively avoid singular
configurations thus increasing the singularity-free wpdce of the parallel manipulator. Vétial. [15] used
a 3-DOF parallel manipulator with actuation redundancyeordase the tracking error on a trajectory with
a rounded corner.

Jouanetet al. [16] presented a new method of path planning for trajeesowith sharp corners where the
tool (at the end of the manipulator) and workpiece move gamalously. The path including the sharp corner
is divided into two smooth paths. Ruggiu and Carretero [Ipfjliad a kinematically redundant parallel
manipulator to minimize the acceleration of the actuatdnfierfollowing certain trajectories. The method
was applied on a kinematically redundant parallel mantpufmllowing square paths with rounded corners.
They showed that the accelerations of the actuated jointh@kinematically redundant manipulator are
significantly less than those needed for a non-redundanipuaior.

Recently, a new type of redundancy called internal redutydhas been the focus of some attention in the
context of serial manipulators [18]. Similar to the typesarfundancy described earlier, a new set of degrees
of freedom (DOF) is added to the serial manipulator. Howeivecontrast with the redundant actuators
and/or links described earlier, the new DOF is used to chédmg@ternal geometry of a link resulting in the
change of the location of the link's centre of mass and itdimamnass distribution parameteiise(, its mass
moment of inertia). Since the changes are made within tleenat members of the link, the redundant DOF
does not have a direct effect on the end effector pibse fosition and orientation).

In this paper, the concept of internal redundancy is appled planar parallel manipulator. First, a 3-
RRR manipulator with internal redundancy in all three braexcis described and its kinematic and dynamic
equations (Sections 2) are derived. Then, an optimizatioblem is formulated where the displacement
of each of the portable masses at every point throughougjectoay is sought to minimize the torques at
the base actuators (Section 3). The architectural parasrate trajectory planning algorithm are explained
through a numerical example and are presented in Sectiod than discussed in more detail in Section 5.
Finally, Section 6 presents the conclusions and brieflydises potential future work.
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Fig. 1. 3-RRR planar manipulator: a) basic kinematic parameters atathjion of the centre of mass of each compo-
nent (; are fixed values whilg are variable).

2. THE 3-RRR MANIPULATOR WITH INTERNAL REDUNDANCY

A 3-DOF planar parallel manipulator shown in Fig. 1a is cimat®einvestigate the effect of internal redun-
dancy in parallel manipulators. The manipulator is a symigedt3-RRR manipulator with bases; G,G3)
and end effectorA1A2Az) as equilateral triangles. The three revolute actuatoradee the manipulator’'s
end effector are located &, the base joint of each branch. The length of the proximékline., links G;B;
(i=1,2,3), is denoted by; while the length of the distal link,e., BiA; (i = 1,2,3) is denoted bys.

In order to study the concept of internal redundancy, a o the distal link (the portion frorB; to Af)
protrudes on the opposite side of the revolute joirBjand creates a linear track frof to A{ where the
redundant mass can slide on (see Fig. 1b). The position of the mass relatitied elbow jointB; is given
by s and is measured in the direction &f Since the massas; are mounted on tracks or prismatic joints,
their position along\/A{ can be actively controlled. More specifically, the distagdeom elbow jointB; to
the centre of massi can be actively controlled thus changing the overall dygmmoperties and effects of
links A/A; [19, 20].

To help complete the dynamic model, each element is giversa miaile symmetry is assumed to simplify
the analysis. Moreover, the links are modelled as slend#s. rbhe proximal links are all assigned a mass
my with their centre of mass located halfway betwé&grand B; while all three distal links are assigned a
massmy with their centre of mass located halfway betwe¢rand Ai. The moving platform is assigned a
massme with its barycentre located at the centroid of the movingdfptan.

2.1. Kinematics

The base coordinate fran@xy (denoted by{ O}) shown in Fig. 1 is fixed on poin®;. A moving coor-
dinate frameP-xyyn (denoted by{N}) is attached to the barycentre of the moving platform.

The Jacobian matrix of the manipulator is written as follows

—an b -4
C C C
P MY O
C; C C;
—b by &
C3 C3 C3
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where the elements of this Jacobian matrix can be shown t2lje [

a = —hi(x—xg)+hscosh +hicosy (2)
bi = —hi(y—yg)+hising +hzsing (3)
¢ = hg(y—yG)cost — (X—Xg)sinG]+sin(6 — @) (4)
d = hel(y—yc)cosp — (x—xg)sin@] —sin(6 — @) ©)

wherexg, andyg, are the Cartesian components of the position of pGintvhile h; = ﬁ hy = % and

h; = % For a given pose, expressions to compute anglaadq, shown in Fig 1, are given in [20].

2.2. Link Jacobian Matrices

Since the Principle of Virtual Work is applied to develop thenamic model of the 3-RRR manipulator,
link Jacobian matrices have to be derived. When the endteffecsubjected to a virtual displacement, the
link Jacobian sub-matrix related to the linear velocityyides the virtual displacement of a point on a link,
while the link Jacobian sub-matrix related to angular viéyogroduces the virtual angular displacement of
a link. PointsG;, B; andP are considered as the pivotal points of lig®;, B;A, and the moving platform,
respectively. The link Jacobian sub-matrix related to thgugar velocity of linkG;B; is written as follows:

Gy = [%’* = *q—d] (6)

The link Jacobian sub-matrix related to the linear velooityoint G; is zero since the velocity of that
point is zero and is thus written as:

Hi = 0 (7)

The link Jacobian sub-matrix related to the linear velooitypoint B; and the link Jacobian sub-matrix
related to the angular velocity of lin;A; are written as follows:

b, — I_1 g;siné b; sin6, disiné (8)
2.7 & |-acos® —bicosd —dicos6,
_sinB, i T —lysinG;
G2 = [%ﬂﬁ %} ([ e & |+NRrae; - [Ilcose.l Gi1 (9)

wheree; =[1 0 0",e,=[0 1 (" ande3=[0 0 1. Also, 3 describes the angle of lirA; with respect
to the horizontak direction. The rotation matriR describes fram¢N} relative to frame{O} andr 4, is the
position vector of poin#. The determination of anglg, as well as the first and second derivativesgof
andp; that will be used later, are developed in [20].

The link Jacobian sub-matrix related to the angular vejamfithe moving platform and the link Jacobian
sub-matrix related to the linear velocity of poidtare written as follows:

Gy = € (10)
100
Hy = {o 1 o] (11)

2.3. Inertial Force and Inertial Moment
Here, the Newton-Euler formulation is applied to develog ithertial forces and the inertial moments of
each moving body about its centre of mass. Then, thesedh@stces and moments are calculated about
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pivotal points (.e., pointsA;, B andG;). The inertial force and moment of lin&;B; about pivotal poinG;
are written as follows:

o o= —m ('Ele.[—sine. cosa]T — 267 [cosd sin&f) (12)

Mi = -8l (13)

where8, 6 and are the angular displacement, angular velocity and angutzeleration of actuatdyand
li1 is the moment of inertia of links;B; about pointG;.

The influence of internal redundancy appears in the ineidiae and moment of the distal links where
the moment of inertia and mass centre of the links vary wispeet to the position ohs. The equations for
the inertial force and moment about poBtof the distal links are written as follows:

Fio = —Mpo (aai +riof [ sinBs cosBT — rioB [cosp sinBi]T> —mg§ [cosB sinB]"
—2me& 3 [sin() cos(3)]" | (14)
Mz = —pBiliz—Mpli2[—SING cosB]ag — 2mssS [ (15)

wheref;, i andﬁi are the displacement, angular velocity and angular aat@arof the passive joints and
Mpyot IS the total mass of link\A;, that is,myo = My + ms. Also, ag, describes the linear acceleration of
point B;, riz is the distance between the centre of mass of Af# and pointB; while I;, is the moment of
inertia of the distal link with respect tB;. The distance from poirB; to the barycentre of the redundant
mass iss while § ands’ describe the velocity and acceleratiommfrelative toB;. The position of the centre
of mass of the distal link and its moment of inertia vary wiglspect to the position of the portable mass and
are written as follows:

rp = T (16)

mp + M

o = Iy +ms(s)? (17)
whererg, is the position of the centre of mass of the distal link (eglolg ms) and is equal to zero for
the case wheBjA is equal toBA], andl,%/,Aq is the moment of inertia of linlk{A; about its centre of mass
(excludingmy).

The inertial force and moment of the moving platform abouhpB is written as follows:

FN = —maap (18)
My = —dly (19)

The plots are presented in the greater scale to highlightiffierences. wher@p and & are the linear
acceleration of poinP and the angular acceleration of the moving platform, respdy, while m, andly
represents the mass and the moment of inertia of the movaifpph.

2.4. Dynamic Model
The dynamic equation of the 3HR is written as follows:

3 2
Jt o+ ;;[ﬁ GilFi Myl"[HY GiJ[Fn Mn]" =0 (20)

whereJ is the Jacobian matrix of the manipulatarpresents the torque vectdt,; are the link Jacobian
sub-matrices related to velocity a@; are the link Jacobian sub-matrices related to the angulacit of
the links,Hy and Gy represent the link Jacobian sub-matrix related to velcaitg the link Jacobian sub-
matrix related to the angular velocity of the moving platfioi;; andMj; are inertial forces and moments
of the robot links andFy andGy represent the inertial force and moment of the moving platfo
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3. TRAJECTORY OPTIMIZATION

When planning a trajectory in the Cartesian space, theatispient, velocity and acceleration of the end
effector are known. These can be used to calculate the kiieepraperties of all active joints for every point
in the trajectory while the dynamic equations can be usednupeite the actuator torques. Since the torques
necessary to move the end effector are a function of theipositelocity and acceleration of the portable
masses, moving the redundant masges ¢hangings, § ands for i = 1,2, 3) will also have a direct effect
on the torques at the base-mounted actuators.

Here, variables are optimized to minimize the manipulator’s total torque apecific time step within
the trajectory. The optimization problem is written asdolb:

3

min (Ti(S) = AT))? (22)
2

subjectto -l <5<, (22)

_ST'IaX S S S smax (23)

—Snax < § < Smnax (24)

wherer; refers to the optimized torque of actuai@t every time step; is the torque value obtained when a
similar manipulator without internal redundancy is used &ris a coefficient between 0 and 1 which makes
the objective function flexible on the percentage of therojaied torque value with respect to the torques of
the non-redundant manipulator. Whars equal to zero, the optimization algorithm decreasesditpie as
much as possible. This, however, can cause problems siaselibcity or acceleration limits are sometimes
attained and the optimization is not efficient. The optiri@avariables i(e., ) refer to the distance from
joint B; to the barycentre of the corresponding redundant mass.uatieq (22), the value of has been
constrained so as to keep it within tra&}é\;. Also, the rate of change of (i.e., 5) is bounded in the positive
and negative directions to a maximum absolute valyg (with $nax > 0). In addition to this, the rate of
change of/(i.e,, §) is bounded to a maximum absolute vag4gx. These limits prevent any sudden changes
in the motion of the portable masses.

When a manipulator enters rounded corners of a trajectioeyend-effector acceleration increases sud-
denly. This requires tremendous amounts of torque on thengractuators. Here, the optimization algo-
rithm is applied when the manipulator enters the roundedessr When the end-effector exits the rounded
corners i.e., the acceleration in Cartesian space turns to zero), thalgermasses return to their initial po-
sitions {.e., to B; wheres = 0). Otherwise, the optimization variables meet the limits,(§ =1 ors = —1)
and makes the optimized torque greater than the non-omihones. A 3-4-5 polynomial is used to plan a
smooth trajectory for steering the portable masses towsaid initial positions. Once the portable masses
arrive at the initial positions, they remain stationaryiluhie end-effector reaches another corner. Similarly,
the optimization algorithm applies as the manipulator Ereges and the portable masses return to the initial
positions after the acceleration phase. ctories choosinfigurations that are fa

4. NUMERICAL EXAMPLE

4.1. Architectural Parameters and Analyzed Trajectory

The manipulator’s architectural parameters for the curetample are as follows: all proximal link
lengths are set to 1 m.€., I; = 1 m for all legs). All distal link lengths are also setto 1 ne(lo =1 m
for all legs) where a track has been attached to every distatd allow the portable mass to move from
s = —1 mto 1 m. The base and moving platforms are equilateralgigsninscribed in circles of 1 m and
0.25 min radius, respectively. The massgof each of the proximal links is 1 kg while the distal links bav
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Fig. 2. Displacement of the end-effector in X and Y directierorientation of the end-effector is constant and equal
to zero along the path.

mass, = 2 kg (including the mass of the track) and the end effectomtassm, = 0.5 kg and the moving
mass hasns = 3 kg.

4.2. Trajectory Planning

The procedure has been studied on a square-shaped trajestorrounded corners which has been
planned in the Cartesian space. The end effector moves oaigidtline starting from rest while keeping
the end effector with constant orientation. When the tragkielocity reaches a user-defined velocity in a
specified time ( m/s in 02 s), the end effector tracks the trajectory with a constatboity. The end
effector decelerates in®s to come to a stop in the last point of the trajectory. Ao~ 0.005.

The trajectory’s initial position igp; = [1 0.4]7 where the side length of the square i¢Dm and the
radius of the round corners is= 0.025 m. The trajectory starts from poipi and goes in the positivé
direction. Once the end-effector finishes the last roundeder, the decelerating phase commences and the
the end-effector stops at the point. The displacement of the moving platform in botrandY directions
are presented in Fig. 2. Also, the norm of the Cartesian ugland acceleration of the end effector are
presented in Fig. 3.

The optimization problem was implemented in Matlab. Thecfiom fminconwas used to perform the
constrained local optimization in equations (21) to (23pr#particularly, the Sequential Quadratic Pro-
gramming (SQP) with Hessian update option witfamnconwas used. The SQP method is an alternative
approach for handling inequality constraints in non-lnpaogramming where SQP finds the minimum of
a sequence of quadratic programming sub-problems. Thetolgdunction is estimated with a quadratic
function and is minimized subject to the linearized coristsa In this method, the Hessian of the Lagrangian
function is estimated at every iteration using a quasi-Newtpdate method. This approximation is used to
create a quadratic programming sub-problem and its solugsi@pplied to generate a search direction for
the line search procedure [22]. The objective function @ttptl for different iterations and the results are
suggesting that the objective function is unimodal.

In the current numerical example, the velocity of the pdeabasses is allowed to vary in the range
between—1 m/s and+1 m/s. The maximum absolute value of the acceleration of draple masses is
considered as 8 nfandmg = 3 kg fori = 1,2 3.
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Fig. 3. Reference trajectory

The initial positions of the portable masses are chosen i e centre oAiA{ (.,e,s = 0)att = 0.
Thereatfter, the initial position of the portable masse®isswered as the solution of the optimization algo-
rithm in the previous time step. Also, the portable masses@urned to their initial positions (centre of
AiA;) after the manipulator exits a corner.

5. RESULTS AND DISCUSSION

Figure 4(a) illustrates the comparison between the torgliges obtained from the optimization routine
and the manipulator without internal redundaneg.(ms = lgx = 0) for the trajectory witid = 0.5.

As shown in Fig. 4(a), the optimized torque is fifty percergsle¢han the non-optimized one in both the
accelerating and decelerating phases at the beginningrahdfehe trajectory as well as in the rounded
corner areas. However, the torques of the manipulator withmal redundancy are greater than those of the
non-redundant one while the end-effector acceleratiorrige.AVhen the manipulator is in the acceleration
or deceleration portions at the beginning or end of thedtajg or in the rounded corner areas, the portable
masses have to move in a certain direction (depending on dméonrator configuration) to provide inertial
forces and moments that help to decrease the torques. Tieerdlae portable masses are moved in the
opposite direction to return to their initial positions réafter referred to as the initialization phase, when
the end-effector is not accelerating or decelerating. €guently, the inertial forces and moments created by
the motion of the portable masses in the initialization phiasrease the torques at the ground joints. Also,
it is noticed that the torques in the initialization phaseehdifferent values which are due to the magnitude
of the velocity and acceleration of the portable massesdiinitialization phase. As it is shown in Fig. 5(a),
the acceleration of the portable masses 2 and 3 are greatethth acceleration of the portable mass 1 in the
initialization phase at = 1.1s. Therefore, the inertial forces and moments of the portaidsses 2 and 3
are greater than the counterparts of the portable mass 1.

Figure 4(b) presents the torque of the manipulator withrivderedundancy compared to the one without
internal redundancy whilé = 0. When the objective function coefficient is equal to zehe, dptimization
algorithm decreases the torque as much as possible. Cambguhe portable masses need to provide
greater inertial forces and moments in comparison with gmenér scenarioife., A = 0.5). This leads to
greater values of the velocity and acceleration in the dpétion search space. As it is shown in Fig. 5(b),
the accelerations of the portable masses drop to zero ataséiwvee instancesi.g., the portable mass 1
att = 2.11 s, the portable mass 2 ait= 0.2 sand the portable mass 3tat 1 s) because the corresponding
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Fig. 4. The torques of the ground actuators (in N.m)

velocity meets the limit (1 m/s). The effect fis thus eliminated from the dynamic equation. It can be seen
in Fig. 4(b) that the torques of the manipulator with intémeadundancy exhibit spikes at those instances
and are greater than the non-redundant counterpart. Itders determined that the optimized value of the

torque will be less than non-optimized one if the velocityitiof the portable mass changes to 1.2 m/s.

6. CONCLUSIONS

The dynamic model of a 34RR planar parallel manipulator involving a portable masshendistal links
is developed. The total of the squared actuator torqueséstigated. An optimization algorithm is imple-
mented to find the optimal position of the portable massesewhe end effector undergoes an arbitrary
trajectory with a rounded corner.

The concept was tested on a square-shaped trajectory witlded corners. The results of the conducted
test suggests that the motion of the portable masses caovumfie., reduce) the ground actuator torques
for both the accelerating and decelerating sections atabihbing and end of the trajectory. Also, the base
actuator torques improve when the end effector tracks thied®d corner.

The objective function is flexible for determining the penage of torque improvement with respect to
the torque values of the same manipulator without interedlindancy. Since a higher percentage of torque
improvement requires greater velocity and the accelerdimits for the portable masses, the objective
function can be adjusted to keep the optimization variai¢isin the limits.

The proposed strategy turns off the optimization algorithinen the end-effector finishes the accelerating
phase and is coming out of the rounded corners areas. Thamttable masses return to the initial positions
smoothly. Therefore, the portable masses do not meet tipdadésnent limits and the algorithm can be
applied to the square-shaped trajectory with any side ter@therwise, the portable masses may reach the
displacement limits and do not have room to move furthertierrtext rounded corner.

The obtained simulation results suggests that the apiglicaf internal redundancy in a 3HR planar
manipulator can contribute to overcome the limits of theugbactuators (without altering the ground actu-
ators) while the manipulator tracks a trajectory with roeth@orners. This is possible as the dynamic forces
required to perform the more demanding trajectories areedhlay the base actuators and the additional
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Fig. 5. Acceleration of the portable masseg §)

actuators on the distal links.

The parameters that affect the simulation are the Cartesiaeity of the end effector, the coefficient of
the objective function and the allowed limits of the velgdind acceleration of the portable masses. For
instance, the velocity and acceleration limits of the guiganasses needs to be adjusted with respect to the
dimension of the manipulator as well as the the referengectay. Otherwise, the velocity or acceleration
of the portable masses may meet the limits and their effdtbaieliminated from the dynamic equation.
Moreover, due to the aforementioned force sharing effeetptalance between the contribution of the two
sets of actuators to the specific task needs to be carefullyidered €.g, using an objective function that
considers both sets of actuators).

As future work, it is suggested to look at the trajectory glbpbrather than point-to-point motion planning.
In that case, the position of the portable masses can betedjudth respect to the any up-coming critical
situation (.e., rounded corner).
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