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ABSTRACT
The actuation of conventionally fixed linkage parameters such as the moment of inertia can enhance the

system dynamic performance. Recently, the idea of internalredundancy was introduced which is considered
as variation of link geometry and may contribute in some cases to overcome the limits of the robot’s actuator.
This paper investigates the effects of adding a portable mass to the distal link of the 3-RRR planar manipu-
lator which is allowed to trace a square-shaped trajectory with rounded corners. The proposed method uses
the manipulator’s dynamic model to actively optimize the location of the redundant masses at every point
along the trajectory to improve the dynamic performance of the manipulator while sorting a trajectory with
sharp corners. Numerical examples are shown to support the idea.

Keywords: internal redundancy; parallel manipulator; dynamic modelling; square-shaped trajectory; opti-
mization.

RÉDUCTION DES COUPLES D’UN MANIPULATEUR 3-RRR PLAN SUIVANT UNE
TRAJECTOIRE CARRÉE

RÉSUMÉ
L’actionnement de paramètres qui sont normalement fixes desmembres, tels que le moment d’inertie,

peut améliorer la performance dynamique d’un système. La redondance interne a récemment été proposée
pour modifier la géométrie des membres et ainsi pallier aux limitations de l’actionneur du robot. Cet article
examine les effets de l’addition d’une masse déplaçable surchaque membre distal d’un manipulateur 3-RRR
plan lorsqu’il suit une trajectoire carrée avec des coins arrondis. La méthode proposée utilise le modèle
dynamique du manipulateur pour optimiser la position des masses redondantes à chaque point le long de la
trajectoire et ainsi améliorer la performance dynamique dumanipulateur lorsqu’il suit une trajectoire avec
des virages brusques. Des exemples numériques sont présentés.

Mots-clés : redondance interne ; manipulateur parallèle ; model dynamique ; trajectoire carrée ; optimisa-
tion.
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1. INTRODUCTION

Parallel manipulators have been widely used in the manufacturing industry where continuous paths have
to be followed with high tracking accuracy. These tasks include welding, laser cutting, assembly and debur-
ring, to name a few. Unfortunately, manipulators may sufferfrom tracking error when the trajectory has a
sharp corner. More specifically, when the manipulator approaches a sharp corner, the acceleration changes
drastically which requires large torques from the actuators. Consequently, the sharp corner trajectory turns
to a rounded corner trajectory since the maximum torque of the actuators is limited. The effects of internal
redundancy are investigated here when tracking a sharp corner.

Redundancy in parallel manipulators is normally divided into kinematic redundancy, actuation redun-
dancy and branch redundancy [1–5]. Actuation redundancy consists of replacing passive joints with active
ones [2, 6–8] where the number of degrees-of-freedom or mobility of the manipulator does not change. Al-
though actuation redundancy can help either eliminate or reduce singular configurations, issues such as force
interference make the manipulators more complex to analyze, design and control [9, 10]. The second type
of redundancy is called branch redundancy where an extra actuated branch is added to the manipulator [11].
Branch redundancy can improve the force capabilities of themanipulator and reduce the number of singular
configurations. The third type of redundancy is called kinematic redundancy where active joints and links are
added to one or more branches of the manipulator [3, 12]. Thistype of redundancy can enhance the dexterity
of the manipulator as well as enlarge its workspace. Additionally, kinematic redundancy allows to follow
trajectories choosing configurations that are far from singular configurations since the inverse displacement
problem has an infinite number of solutions [13].

Redundant parallel manipulators have been widely used to improve the trajectories of parallel robots. For
instance, Chaet al. [14] showed that kinematically redundant manipulators can effectively avoid singular
configurations thus increasing the singularity-free workspace of the parallel manipulator. Wuet al. [15] used
a 3-DOF parallel manipulator with actuation redundancy to decrease the tracking error on a trajectory with
a rounded corner.

Jouanehet al. [16] presented a new method of path planning for trajectories with sharp corners where the
tool (at the end of the manipulator) and workpiece move simultaneously. The path including the sharp corner
is divided into two smooth paths. Ruggiu and Carretero [17] applied a kinematically redundant parallel
manipulator to minimize the acceleration of the actuators while following certain trajectories. The method
was applied on a kinematically redundant parallel manipulator following square paths with rounded corners.
They showed that the accelerations of the actuated joints onthe kinematically redundant manipulator are
significantly less than those needed for a non-redundant manipulator.

Recently, a new type of redundancy called internal redundancy has been the focus of some attention in the
context of serial manipulators [18]. Similar to the types ofredundancy described earlier, a new set of degrees
of freedom (DOF) is added to the serial manipulator. However, in contrast with the redundant actuators
and/or links described earlier, the new DOF is used to changethe internal geometry of a link resulting in the
change of the location of the link’s centre of mass and its inertial mass distribution parameters (i.e., its mass
moment of inertia). Since the changes are made within the internal members of the link, the redundant DOF
does not have a direct effect on the end effector pose (i.e., position and orientation).

In this paper, the concept of internal redundancy is appliedto a planar parallel manipulator. First, a 3-
RRR manipulator with internal redundancy in all three branches is described and its kinematic and dynamic
equations (Sections 2) are derived. Then, an optimization problem is formulated where the displacement
of each of the portable masses at every point throughout a trajectory is sought to minimize the torques at
the base actuators (Section 3). The architectural parameters and trajectory planning algorithm are explained
through a numerical example and are presented in Section 4 and then discussed in more detail in Section 5.
Finally, Section 6 presents the conclusions and briefly discusses potential future work.
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Fig. 1. 3-RRR planar manipulator: a) basic kinematic parameters and b)location of the centre of mass of each compo-
nent (l i are fixed values whilesi are variable).

2. THE 3-RRR MANIPULATOR WITH INTERNAL REDUNDANCY

A 3-DOF planar parallel manipulator shown in Fig. 1a is chosen to investigate the effect of internal redun-
dancy in parallel manipulators. The manipulator is a symmetrical 3-RRR manipulator with base (G1G2G3)
and end effector (A1A2A3) as equilateral triangles. The three revolute actuators tomove the manipulator’s
end effector are located atGi, the base joint of each branch. The length of the proximal links, i.e., links GiBi

(i = 1,2,3), is denoted byl1 while the length of the distal link,i.e., BiAi (i = 1,2,3) is denoted byl2.
In order to study the concept of internal redundancy, a portion of the distal link (the portion fromBi to A′

i)
protrudes on the opposite side of the revolute joint atBi and creates a linear track fromAi to A′

i where the
redundant massms can slide on (see Fig. 1b). The position of the mass relative to the elbow jointBi is given
by si and is measured in the direction ofAi. Since the massesms are mounted on tracks or prismatic joints,
their position alongAiA′

i can be actively controlled. More specifically, the distancesi from elbow jointBi to
the centre of massms can be actively controlled thus changing the overall dynamic properties and effects of
links A′

iAi [19, 20].
To help complete the dynamic model, each element is given a mass while symmetry is assumed to simplify

the analysis. Moreover, the links are modelled as slender rods. The proximal links are all assigned a mass
m1 with their centre of mass located halfway betweenGi andBi while all three distal links are assigned a
massm2 with their centre of mass located halfway betweenA′

i andAi. The moving platform is assigned a
massme with its barycentre located at the centroid of the moving platform.

2.1. Kinematics
The base coordinate frameO-xy (denoted by{O}) shown in Fig. 1 is fixed on pointG1. A moving coor-

dinate frameP-xNyN (denoted by{N}) is attached to the barycentre of the moving platform.
The Jacobian matrix of the manipulator is written as follows:

J =







−a1
c1

−b1
c1

−d1
c1

−a2
c2

−b2
c2

−d2
c2

−a3
c3

−b3
c3

−d3
c3






(1)
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where the elements of this Jacobian matrix can be shown to be [21]:

ai = −h1(x−xGi )+h3cosθi +h1cosφi (2)

bi = −h1(y−yGi )+h1sinθi +h2sinφi (3)

ci = h3[(y−yGi )cosθi − (x−xGi)sinθi ]+sin(θi −φi) (4)

di = h2[(y−yGi )cosφi − (x−xGi)sinφi ]−sin(θi −φi) (5)

wherexGi andyGi are the Cartesian components of the position of pointGi while h1 = 1
l1l3

, h2 = 1
l1

and

h3 =
1
l3

. For a given pose, expressions to compute anglesθi andφi , shown in Fig 1, are given in [20].

2.2. Link Jacobian Matrices
Since the Principle of Virtual Work is applied to develop thedynamic model of the 3-RRR manipulator,

link Jacobian matrices have to be derived. When the end effector is subjected to a virtual displacement, the
link Jacobian sub-matrix related to the linear velocity provides the virtual displacement of a point on a link,
while the link Jacobian sub-matrix related to angular velocity produces the virtual angular displacement of
a link. PointsGi , Bi andP are considered as the pivotal points of linksGiBi, BiAi and the moving platform,
respectively. The link Jacobian sub-matrix related to the angular velocity of linkGiBi is written as follows:

Gi1 =
[

−ai
ci

−bi
ci

−di
ci

]

. (6)

The link Jacobian sub-matrix related to the linear velocityof point Gi is zero since the velocity of that
point is zero and is thus written as:

H i1 = 0 (7)

The link Jacobian sub-matrix related to the linear velocityof point Bi and the link Jacobian sub-matrix
related to the angular velocity of linkBiAi are written as follows:

H i2 =
l1
ci

[

ai sinθi bi sinθi di sinθi

−ai cosθi −bi cosθi −di cosθi

]

(8)

Gi2 =
[

−sinβi
l2

cosβi
l2

]

(

[

e1 e2
]

+NRrAie
T
3 −

[

−l1sinθi

l1cosθi

]

Gi1

)

(9)

wheree1 = [1 0 0]T , e2 = [0 1 0]T ande3 = [0 0 1]T . Also,βi describes the angle of linkBiAi with respect
to the horizontalx direction. The rotation matrixR describes frame{N} relative to frame{O} andrAi is the
position vector of pointAi . The determination of angleβi, as well as the first and second derivatives ofθi

andβi that will be used later, are developed in [20].
The link Jacobian sub-matrix related to the angular velocity of the moving platform and the link Jacobian

sub-matrix related to the linear velocity of pointP are written as follows:

GN = eT
3 (10)

HN =

[

1 0 0
0 1 0

]

. (11)

2.3. Inertial Force and Inertial Moment
Here, the Newton-Euler formulation is applied to develop the inertial forces and the inertial moments of

each moving body about its centre of mass. Then, these inertial forces and moments are calculated about
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pivotal points (i.e., pointsAi,Bi andGi). The inertial force and moment of linkGiBi about pivotal pointGi

are written as follows:

Fi1 = −m1

(

l1
2

θ̈i [−sinθi cosθi ]
T −

l1
2

θ̇i
2
[cosθi sinθi ]

T
)

(12)

Mi1 = −θ̈i Ii1 (13)

whereθi , θ̇i andθ̈i are the angular displacement, angular velocity and angularacceleration of actuatori, and
Ii1 is the moment of inertia of linkGiBi about pointGi.

The influence of internal redundancy appears in the inertialforce and moment of the distal links where
the moment of inertia and mass centre of the links vary with respect to the position ofms. The equations for
the inertial force and moment about pointBi of the distal links are written as follows:

Fi2 = −m2tot

(

aBi + r i2β̈i [−sinβi cosβi ]
T − r i2β̇i

2
[cosβi sinβi]

T
)

−mss̈i [cosβi sinβi]
T

−2msṡi β̇i [−sin(βi)cos(βi)]
T (14)

Mi2 = −β̈iIi2−m2totr i2 [−sinβi cosβi ]aBi −2mssi ṡi β̇i (15)

whereβi , β̇i andβ̈i are the displacement, angular velocity and angular acceleration of the passive joints and
m2tot is the total mass of linkA′

iAi, that is,m2tot = m2+ms. Also, aBi describes the linear acceleration of
point Bi, r i2 is the distance between the centre of mass of linkA′

iAi and pointBi while Ii2 is the moment of
inertia of the distal link with respect toBi. The distance from pointBi to the barycentre of the redundant
mass issi while ṡi ands̈i describe the velocity and acceleration ofms relative toBi. The position of the centre
of mass of the distal link and its moment of inertia vary with respect to the position of the portable mass and
are written as follows:

r i2 =
mssi +m2rG2

m2+ms
(16)

Ii2 = IA′
iAi

+ms(si)
2 (17)

whererG2 is the position of the centre of mass of the distal link (excluding ms) and is equal to zero for
the case whenBiAi is equal toBiA′

i , andIA′
iAi

is the moment of inertia of linkA′
iAi about its centre of mass

(excludingms).
The inertial force and moment of the moving platform about point P is written as follows:

FN = −mnaP (18)

MN = −α̈ IN (19)

The plots are presented in the greater scale to highlight thedifferences. whereaP and α̈ are the linear
acceleration of pointP and the angular acceleration of the moving platform, respectively, while mn andIN
represents the mass and the moment of inertia of the moving platform.

2.4. Dynamic Model
The dynamic equation of the 3-RRR is written as follows:

JTτττ +
3

∑
i=1

2

∑
j=1

[

HT
i j GT

i j

]

[Fi j M i j ]
T [HT

N GT
N

]

[FN MN]
T = 0 (20)

whereJ is the Jacobian matrix of the manipulator,τττ presents the torque vector,H i j are the link Jacobian
sub-matrices related to velocity andGi j are the link Jacobian sub-matrices related to the angular velocity of
the links,HN andGN represent the link Jacobian sub-matrix related to velocityand the link Jacobian sub-
matrix related to the angular velocity of the moving platform, Fi j andM i j are inertial forces and moments
of the robot links andFN andGN represent the inertial force and moment of the moving platform.
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3. TRAJECTORY OPTIMIZATION

When planning a trajectory in the Cartesian space, the displacement, velocity and acceleration of the end
effector are known. These can be used to calculate the kinematic properties of all active joints for every point
in the trajectory while the dynamic equations can be used to compute the actuator torques. Since the torques
necessary to move the end effector are a function of the position, velocity and acceleration of the portable
masses, moving the redundant masses (i.e., changingsi , ṡi ands̈i for i = 1,2,3) will also have a direct effect
on the torques at the base-mounted actuators.

Here, variablessi are optimized to minimize the manipulator’s total torque ata specific time step within
the trajectory. The optimization problem is written as follows:

min
si

3

∑
i=1

(τi(si)−λ τ̄i)
2 (21)

subject to −l2 ≤ si ≤ l2 (22)

−ṡmax≤ ṡi ≤ ṡmax (23)

−s̈max≤ s̈i ≤ s̈max (24)

whereτi refers to the optimized torque of actuatori at every time step,̄τi is the torque value obtained when a
similar manipulator without internal redundancy is used and λ is a coefficient between 0 and 1 which makes
the objective function flexible on the percentage of the optimized torque value with respect to the torques of
the non-redundant manipulator. Whenλ is equal to zero, the optimization algorithm decreases the torque as
much as possible. This, however, can cause problems since the velocity or acceleration limits are sometimes
attained and the optimization is not efficient. The optimization variables (i.e., si) refer to the distance from
joint Bi to the barycentre of the corresponding redundant mass. In equation (22), the value ofsi has been
constrained so as to keep it within trackA′

iAi. Also, the rate of change ofsi (i.e., ṡi) is bounded in the positive
and negative directions to a maximum absolute value ˙smax (with ṡmax > 0). In addition to this, the rate of
change of ˙si (i.e., s̈i) is bounded to a maximum absolute value ¨smax. These limits prevent any sudden changes
in the motion of the portable masses.

When a manipulator enters rounded corners of a trajectory, the end-effector acceleration increases sud-
denly. This requires tremendous amounts of torque on the ground actuators. Here, the optimization algo-
rithm is applied when the manipulator enters the rounded corners. When the end-effector exits the rounded
corners (i.e., the acceleration in Cartesian space turns to zero), the portable masses return to their initial po-
sitions (i.e., to Bi wheresi = 0). Otherwise, the optimization variables meet the limits (i.e., si = 1 orsi =−1)
and makes the optimized torque greater than the non-optimized ones. A 3-4-5 polynomial is used to plan a
smooth trajectory for steering the portable masses toward their initial positions. Once the portable masses
arrive at the initial positions, they remain stationary until the end-effector reaches another corner. Similarly,
the optimization algorithm applies as the manipulator accelerates and the portable masses return to the initial
positions after the acceleration phase. ctories choosing configurations that are fa

4. NUMERICAL EXAMPLE

4.1. Architectural Parameters and Analyzed Trajectory
The manipulator’s architectural parameters for the current example are as follows: all proximal link

lengths are set to 1 m (i.e., l1 = 1 m for all legs). All distal link lengths are also set to 1 m (i.e., l2 = 1 m
for all legs) where a track has been attached to every distal link to allow the portable mass to move from
si = −1 m to 1 m. The base and moving platforms are equilateral triangles inscribed in circles of 1 m and
0.25 m in radius, respectively. The massm1 of each of the proximal links is 1 kg while the distal links have a
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Fig. 2. Displacement of the end-effector in X and Y directions - orientation of the end-effector is constant and equal
to zero along the path.

massm2 = 2 kg (including the mass of the track) and the end effector hasmassme= 0.5 kg and the moving
mass hasms = 3 kg.

4.2. Trajectory Planning
The procedure has been studied on a square-shaped trajectory with rounded corners which has been

planned in the Cartesian space. The end effector moves on a straight line starting from rest while keeping
the end effector with constant orientation. When the tracking velocity reaches a user-defined velocity in a
specified time (0.2 m/s in 0.2 s), the end effector tracks the trajectory with a constant velocity. The end
effector decelerates in 0.2 s to come to a stop in the last point of the trajectory. Also,δ t = 0.005.

The trajectory’s initial position isp1 = [1 0.4]T where the side length of the square is 0.17 m and the
radius of the round corners isr = 0.025 m. The trajectory starts from pointp1 and goes in the positiveY
direction. Once the end-effector finishes the last rounded corner, the decelerating phase commences and the
the end-effector stops at the pointp1. The displacement of the moving platform in bothX andY directions
are presented in Fig. 2. Also, the norm of the Cartesian velocity and acceleration of the end effector are
presented in Fig. 3.

The optimization problem was implemented in Matlab. The function fminconwas used to perform the
constrained local optimization in equations (21) to (23). More particularly, the Sequential Quadratic Pro-
gramming (SQP) with Hessian update option withinfminconwas used. The SQP method is an alternative
approach for handling inequality constraints in non-linear programming where SQP finds the minimum of
a sequence of quadratic programming sub-problems. The objective function is estimated with a quadratic
function and is minimized subject to the linearized constraints. In this method, the Hessian of the Lagrangian
function is estimated at every iteration using a quasi-Newton update method. This approximation is used to
create a quadratic programming sub-problem and its solution is applied to generate a search direction for
the line search procedure [22]. The objective function is plotted for different iterations and the results are
suggesting that the objective function is unimodal.

In the current numerical example, the velocity of the portable masses is allowed to vary in the range
between−1 m/s and+1 m/s. The maximum absolute value of the acceleration of the portable masses is
considered as 8 m/s2 andmsi = 3 kg for i = 1,2,3.
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Fig. 3. Reference trajectory

The initial positions of the portable masses are chosen to beat the centre ofAiA
′

i (i.e., si = 0) att = 0.
Thereafter, the initial position of the portable masses is considered as the solution of the optimization algo-
rithm in the previous time step. Also, the portable masses are returned to their initial positions (centre of
AiA

′

i) after the manipulator exits a corner.

5. RESULTS AND DISCUSSION

Figure 4(a) illustrates the comparison between the torque values obtained from the optimization routine
and the manipulator without internal redundancy (i.e., msi = IBiA′

i
= 0) for the trajectory withλ = 0.5.

As shown in Fig. 4(a), the optimized torque is fifty percent less than the non-optimized one in both the
accelerating and decelerating phases at the beginning and end of the trajectory as well as in the rounded
corner areas. However, the torques of the manipulator with internal redundancy are greater than those of the
non-redundant one while the end-effector acceleration is zero. When the manipulator is in the acceleration
or deceleration portions at the beginning or end of the trajectory or in the rounded corner areas, the portable
masses have to move in a certain direction (depending on the manipulator configuration) to provide inertial
forces and moments that help to decrease the torques. Thereafter, the portable masses are moved in the
opposite direction to return to their initial positions, hereafter referred to as the initialization phase, when
the end-effector is not accelerating or decelerating. Consequently, the inertial forces and moments created by
the motion of the portable masses in the initialization phase increase the torques at the ground joints. Also,
it is noticed that the torques in the initialization phase have different values which are due to the magnitude
of the velocity and acceleration of the portable masses in the initialization phase. As it is shown in Fig. 5(a),
the acceleration of the portable masses 2 and 3 are greater than the acceleration of the portable mass 1 in the
initialization phase att = 1.1s. Therefore, the inertial forces and moments of the portablemasses 2 and 3
are greater than the counterparts of the portable mass 1.

Figure 4(b) presents the torque of the manipulator with internal redundancy compared to the one without
internal redundancy whileλ = 0. When the objective function coefficient is equal to zero, the optimization
algorithm decreases the torque as much as possible. Consequently, the portable masses need to provide
greater inertial forces and moments in comparison with the former scenario (i.e., λ = 0.5). This leads to
greater values of the velocity and acceleration in the optimization search space. As it is shown in Fig. 5(b),
the accelerations of the portable masses drop to zero at several time instances (i.e., the portable mass 1
at t = 2.11 s, the portable mass 2 att = 0.2 s and the portable mass 3 att = 1 s) because the corresponding
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Fig. 4. The torques of the ground actuators (in N.m)

velocity meets the limit (1 m/s). The effect of ¨si is thus eliminated from the dynamic equation. It can be seen
in Fig. 4(b) that the torques of the manipulator with internal redundancy exhibit spikes at those instances
and are greater than the non-redundant counterpart. It has been determined that the optimized value of the
torque will be less than non-optimized one if the velocity limit of the portable mass changes to 1.2 m/s.

6. CONCLUSIONS

The dynamic model of a 3-RRR planar parallel manipulator involving a portable mass onthe distal links
is developed. The total of the squared actuator torques is investigated. An optimization algorithm is imple-
mented to find the optimal position of the portable masses while the end effector undergoes an arbitrary
trajectory with a rounded corner.

The concept was tested on a square-shaped trajectory with rounded corners. The results of the conducted
test suggests that the motion of the portable masses can improve (i.e., reduce) the ground actuator torques
for both the accelerating and decelerating sections at the beginning and end of the trajectory. Also, the base
actuator torques improve when the end effector tracks the rounded corner.

The objective function is flexible for determining the percentage of torque improvement with respect to
the torque values of the same manipulator without internal redundancy. Since a higher percentage of torque
improvement requires greater velocity and the acceleration limits for the portable masses, the objective
function can be adjusted to keep the optimization variableswithin the limits.

The proposed strategy turns off the optimization algorithmwhen the end-effector finishes the accelerating
phase and is coming out of the rounded corners areas. Then, the portable masses return to the initial positions
smoothly. Therefore, the portable masses do not meet the displacement limits and the algorithm can be
applied to the square-shaped trajectory with any side length. Otherwise, the portable masses may reach the
displacement limits and do not have room to move further for the next rounded corner.

The obtained simulation results suggests that the application of internal redundancy in a 3-RRR planar
manipulator can contribute to overcome the limits of the ground actuators (without altering the ground actu-
ators) while the manipulator tracks a trajectory with rounded corners. This is possible as the dynamic forces
required to perform the more demanding trajectories are shared by the base actuators and the additional
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Fig. 5. Acceleration of the portable masses (m/s2)

actuators on the distal links.
The parameters that affect the simulation are the Cartesianvelocity of the end effector, the coefficient of

the objective function and the allowed limits of the velocity and acceleration of the portable masses. For
instance, the velocity and acceleration limits of the portable masses needs to be adjusted with respect to the
dimension of the manipulator as well as the the reference trajectory. Otherwise, the velocity or acceleration
of the portable masses may meet the limits and their effect will be eliminated from the dynamic equation.
Moreover, due to the aforementioned force sharing effect, the balance between the contribution of the two
sets of actuators to the specific task needs to be carefully considered (e.g., using an objective function that
considers both sets of actuators).

As future work, it is suggested to look at the trajectory globally rather than point-to-point motion planning.
In that case, the position of the portable masses can be adjusted with respect to the any up-coming critical
situation (i.e., rounded corner).
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