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ABSTRACT
Increasing the strength of gears is a recurrent demand from industry. The authors report a novel approach

to the design of tooth-root profile of spur and bevel gears, with the aim of reducing stress concentration,
thereby increasing the gear-tooth load-carrying capacity. Bevel gears generated using the Tredgold ap-
proximation are considered. An iterative co-simulation consisting of tooth-root profile shape synthesis via
nonlinear programming and finite element software tools is conducted, with the purpose of forming the
tooth-root geometry with the minimum stress concentration. The proposed designs are capable of reducing
the stress concentration by 21.0% in spur gears and 15.9% in bevel gears, over their conventional circular-
filleted counterparts. Hence, the results showcase an innovative and sound methodology for the design of
the tooth-root profile to increase gear load-carrying capacity.

Keywords: spur gear; bevel gear; tooth root bending stress; cubic splines; finite element analysis.

OPTIMISATION DE LA RACINE DES PROFILS DE DENTS POUR LA R ÉSISTANCE
MAXIMALE: DES ENGRENAGES PLANAIRES ET CONIQUES

RÉSUMÉ
Augmenter la résistance des dents d’engrenages est une éxigeance récurrente dans les industries. Les

auteurs proposent une nouvelle approche à la conception dela racine des profils de dents des engrenages
planaires et coniques, afin d’augmenter la résistance des engrenages. Des engrenages coniques générés en
utilisant l’approximation de Tredgold ont été étudiés. Une procédure itérative de co-simulation consistant
en la synthèse de la racine des profils de dents, par programmation non-linéaire et analyse par éléments
finis, fut mise en place, afin de diminuer la concentration descontraintes à la racine des profils de dents. Les
profils ainsi proposées permirent de réduire la concentration des contraintes de 21.0% pour les engrenages
planaires et 15.9% pour les engrenages coniques. Donc, les resultats presentent une nouvelle méthodologie
pour la conception de la racine des profils de dents des engrenages, ayant le but d’augmenter la résistance
de ces derniers.

Mots-clés : engrenages planaires ; engrenages coniques ; résistance d’engrenages ; spline cubiques ; analyse
par éléments finis.

1. INTRODUCTION

A growing demand for gears with higher load-carrying capacity and increased fatigue life accompanies
the fast development of automotive transmissions. In orderto achieve this goal, several avenues can be
explored: novel materials; novel manufacturing techniques; or novel gear-tooth geometries [1]. As the key
component in gear transmission systems, the stability and reliability of the gears play a significant role in
the performance of the gear transmission system. Under working conditions, the gear tooth is exposed to
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a combination of several effects, such as stress concentration, misalignment, tooth error, etc. [2]. When
transmitting loads, each gear tooth behaves as a cantileverbeam, subjected to bending. The maximum
bending stress of the gear tooth evolves from the accumulation of normal stress under bending and appears
at the root fillet. The gear tooth root is exposed to a combination of both shearing and bending [3]. The
stress intensity factor and working life of a gear tooth is highly dependent on the tooth-root stress [4].
The first initial crack at the gear tooth often appears at regions that are affected the most by root stress
concentration. Moreover, fatigue failure of tooth-root isalso caused by the stress at the tooth root [1].
Within the development history of gear design, gear tooth fatigue due to bending is always a challenge to
designers.

Precise verification of tooth strength calls for application of experimental technologies, such as electrore-
sistive or piezoresistive. Though experimental testing isnecessary for verifying numerical results, this is
often expensive and complicated [5]. The Finite Element Method (FEM) is a computational tool most of-
ten used to calculate bending stress, strain and deformation [6]. Finite Element Analysis (FEA) provides a
reliable tool to asses the response of physical systems evenunder nonlinear conditions [7].

The circular-filleted tooth root is widely used in the designof the gear tooth-roots [1, 8]. Due to a curvature
discontinuity at the blending points of the circular fillet with the involute tooth profile and the root circle,
stress concentration occurs at those points; such discontinuities cause a drastic jump in stress values, thereby
leading to mechanical failure. Hence, the optimization of the gear tooth-root profile plays a significant role
in reducing stress concentration, thereby improving gear-tooth strength.

In this paper, an innovative optimization procedure combining shape synthesis via nonlinear programming
and FEA software tools is developed to produce the tooth-root fillet with the minimum stress concentration,
in spur and bevel gears. The FEA results show a significant reduction in the maximum von Mises stress of
the optimum tooth profiles when compared with their circularcounterparts.

2. GEOMETRIC MODELLING OF THE GEAR TEETH

2.1. Spur Gears
Figure 1 illustrates the 2-D geometry of an involute spur gear tooth, with the dimensions listed in Table 1.

The parameter values of the spur gear used in this simulationwork are those reported by Ristić [5]. The gear
tooth is built using the coordinate frameOxywith origin at the center of the gear, itsy-axis being the axis of
symmetry of the gear tooth.

Table 1. Dimensions of the spur gear model

number of teethN 20
modulem (mm) 24
face width (mm) 50
pressure angleαC (◦) 20
addendum circle radiusra (mm) 264
pitch circle radiusrp (mm) 240
base circle radiusrb (mm) 225.526
dedendum circle radiusrd (mm) 210

The involute profile has found widespread applications in gear tooth design, due to its ease of high-
precision manufacturing, low transmission error, silent operation as well as simplicity of assembly, arising
from its robustness to errors in the distance between gear axes [9, 10]. The involuteAB

⌢

, shown in Fig. 1 is
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Fig. 1. Geometry of the spur gear tooth

defined by
{

xinv = rb(cost + t sint)
yinv = rb(sint − t cost)

, 0≤ t ≤

√

r2
a

r2
b

−1 (1)

The curve segmentΓ, which blends the involute at pointB and the dedendum circle at pointD, functions
as the gear tooth-root fillet.Γ is commonly produced in gear design as a circular arc connection [5, 11].
However, the problem with the circular root fillet lies in that it provides only first order geometric conti-
nuity, G1, that is, position and tangent-continuity, which gives rise to stress concentration due to curvature
discontinuities at the blending points [12]. Further, the local stress concentration caused by geometrical
discontinuities may lead to mechanical failure [13]. In order to reduce the stress concentration, an important
criterion, G2-continuity at the blending of two given curve segments, should be satisfied.G2-continuity
means position, tangent and curvature continuity over a given geometric curve [14]. Hence, the problem at
hand is formulated as the optimization of the root profile, asimplemented by an optimum curve connecting
the blending pointsB andD with G2-continuityas smoothly as possible.

Further, to investigate the bending strength of the gear tooth, a normal forcef, the full load transmitted,
as shown in Fig. 1, is considered to be exerted at the highest point of single tooth contact (HPSTC) of the
gear—PointH in the same figure.
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2.2. Bevel Gears
A virtual spur gear, as illustrated in Fig. 2, is generated via the projection ofa Tredgold approximation

(TA) bevel gear onto the Tredgold plane [15–17]. The Tredgold plane, by definition, is tangent to the back
cone of a bevel gear, or in other words, it rolls on the surfaceof the back cone [18]. Therefore, for a bevel
gear set, the Tredgold plane for each gear rolls on the surface of the corresponding back cone.

The virtual spur gear has a pitch radiusrb equal to the back cone distance and same pitch as the bevel
gear [19]. The number of teethN′ of the virtual spur gear is given by

N′ =
2πrb

p
(2)

wherep is the circular pitch measured at the heel. In this light,N′ is not necessarily an integer.
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Fig. 2. Straight bevel gear parameters

A bevel pinion belonging to a differential gear set manufactured by Linamar Corporation, an industrial
partner of the Automotive Partnership Canada project at McGill University, is used in this research. The
parameters of the bevel pinion are given in Table 2.

3. METHODOLOGY

3.1. Curve Synthesis
For the purpose of simplifying the curve-synthesis procedure, we resort to non-parametric cubic splines

to discretize the tooth-root fillet [20]. Figure 3 includes asketch of the blending segments—the involute
and part of the dedendum circle—by means of a third one,Γ. The coordinate frameExEyE is built with the
yE-axis parallell toOB, as shown in Fig. 1. Notice that the segments in this figure pertain to a tooth in the
lower half of the gear, as opposed to the tooth of Fig. 1, for ease of representation.
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Table 2. Dimensions of bevel pinion

number of teethN1 9
mating gear teethN2 14
modulem (mm) 5.7658
pressure angleαc (

◦) 24
pitch angleδ (◦) 32.735
face angleδ f (

◦) 39.588
root angleδr (

◦) 24.530
face widthb (mm) 22.5
virtual gear number of teethN′ 11

Further,n+ 2 points{Pk}
n+1
0 are defined along the mid-curve segmentΓ, by their polar coordinates

Pk(ρk,θk), with P0(ρ0,θ0)=BandPn+1(ρn+1,θn+1)=D. For pointPk, letθk = θ0+k∆θ , for k= 1,2, · · · ,n+1,
the uniform increment∆θ being

∆θ =
θk+1−θ0

k+1
(3)

Hence, the polar coordinates{ρk}
n+2
1 are assembled into one (n+2)-dimensional array as

ρ = [ρ0,ρ1, · · · ,ρn+1]
T (4)

By the same token, the arrays of first- and second-order derivatives with respect to the polar coordinateθ of
Fig 3,ρ ′ andρ ′′, respectively, are defined likewise.

According to the definition of non-parametric cubic splines, the cubic polynomialρk(θ) between two
consecutive supporting pointsPk andPk+1 takes the form [21]

ρk(θ) = Ak(θ −θk)
3+Bk(θ −θk)

2+Ck(θ −θk)+Dk (5)

involute

dedendum circle
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Fig. 3. The blending of the involute and root circle segment using aG2-continuous curve fillet
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in which θk ≤ θ ≤ θk+1 and 0≤ k≤ n.
By virtue of theG2-continuity condition, i.e., two curvatures coinciding atthekth blending point,ρk , ρk

′

andρk
′′ and their counterparts at their neighbouring segments, arefound to satisfy the linear relationships

below [21]:
Aρ ′′ = 6Cρ , Pρ ′ = Qρ (6)

with matricesA, C, P andQ provided in the Appendix.
Further, the curvature atPk takes the form

κk =
ρ2

k +2(ρ ′
k)

2−ρkρ ′′
k

[ρ2
k +(ρ ′

k)
2]3/2

(7)

Now, if a curve with ”the smallest possible curvature is sought”, an obvious candidate is a curveΓ with
a curvature distribution that carries the minimum root-mean-square value of its curvature in the segment
comprised betweenB andD of Fig. 1. Hence, the optimization problem is formulated as

z=
1
n

n

∑
k=1

wkκ2
k −→ min

x
, x = [ρ1 · · · ρn]

T

subject to

κ0(ρ ,ρ ′,ρ ′′) = κB = 0, κn+1(ρ ,ρ ′,ρ ′′) = κD =
1
rd

(8)

in whichwk > 0 denotes the normal weight at pointPk, obeying
n
∑

k=1
wk = 1. Besides, with reference to Fig. 1,

the additional boundary constraints at the two blending points are

{

θ0 = θB = 0

θn+1 = θD =
π
2
−ζm

,

{

ρ0 = ρB = rb tanζm

ρn+1 = ρD =
rb

cosζm
− rd

(9)

The optimization problem thus formulated is a constrained nonlinear program, which can be solved using
a suite of methods, the one used here is the in-house developed ODA (orthogonal decomposition algo-
rithm) [22].

The foregoing curve synthesis procedure is used for spur- and bevel-gear tooth-root profile optimization.
While its implementation is obvious in the spur gear case, inbevel gears it depends on the method of
generation. In this research work the TA method is considered for bevel-gear generation.

3.2. Co-simulation
Upon the geometry synthesis of the root profile, the optimization problem formulated in Sec. 3.1 is im-

plemented via a co-simulation among: the ODA package, implemented in Matlab; modelling, using Solid-
Works Application Programming Interface (API); and FEA, using a customized ANSYS Parametric Design
Language (APDL). Figure 4 illustrates the flowchart of the gear tooth-root profile optimization procedure.
In the spur gear case, both modelling and FEA were done on ANSYS using APDL. However, bevel-gear
modelling, which requires more advanced solid modelling techniques, was implemented using a customized
macro in VisualBasic.NET format on SolidWorks. The software packages were coupled together to interact
in an automated iterative procedure to solve the structuraloptimization problem.

The procedure starts with equal weights for all supporting points, i.e.,wk = 1/n, the coordinates for all
supporting points being generated to form the initial cubic-splined tooth profile. The optimum found with
equal weights is termed thegeometric optimum. Based on theG2-continuity constraints, the geometric
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Fig. 4. Root curve optimization flowchart

optimum is capable of reducing the stress concentration to some extent. However, there is still room for
improvement. Hence, a set of iterations is conducted, to findthe root profile with minimum von Mises stress
distribution.

The supporting-point coordinates of the geometrically optimum fillet obtained from Matlab are used
to model the gear tooth. Then, a static analysis is conductedby applying the boundary conditions and
loadings, which produces the von Mises stress for each supporting point along the root-fillet profile. Aiming
to alleviate the stress concentration along the splined fillet, different weights in eq. (8) are assigned to each
supporting point according to their corresponding von Mises stress valuessk, as reported by ANSYS:

wk =
sk
n
∑

i=1
si

(10)

The idea is that curvature values are penalized by means of weights proportional to their von Mises stress
values. The problem previously formulated is solved again but with non-uniform weight coefficients, until
the von Mises stress distribution becomes fairly uniform. The process helps approach Venkayya’s criterion1

of achieving an almost uniform stress distribution at the critical region of the optimum fillet [23]. This fillet
is termed thestructural optimum.

1According to Venkayya’s criterion, the optimum design refers to the one in which the strain energy per unit volume stays constant.
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4. SIMULATION RESULTS

4.1. FE Model Formulation
As shown in Fig. 5a, quadratic 4-node PLANE182 elements wereused on ANSYS 14.0 to discretize the

spur-gear tooth domain. The mesh is refined at the gear tooth fillet, for the purpose of accurate prediction
of the stress concentration at the fillet. The boundary conditions on the generated FE model are defined by
displacement constraints over the inner rim and the other two border surfaces, which separate the modeled
gear tooth from the rest of the gear body. Besides, a 1000(cos 20◦) N tangential load that the gear transmits
is applied as an external force on the FE model, at its HPSTC, averagely distributed along the contact line
over the tooth width.

(a) Spur gear tooth (b) Bevel gear tooth

Fig. 5. Finite Element Mesh

The bevel gear tooth model was generated on SolidWorks 2013 and then imported into ANSYS for static
analysis. To model the TA bevel gear, the virtual spur gear onthe Tredgold plane is used to create the tooth
cut, as shown in Fig. 6. A 2D sketch of the tooth space of the virtual spur gear is created on the Tredgold
plane and tapered smoothly towards the apex and used to cut the gear. Through rotation copying the tooth
spaces, the full gear geometry was accomplished.

The bevel gear tooth is meshed using 8-node brick SOLID185 elements which are suitable for the 3D
modelling of solid structures. The sweep-mesh approach is used to sweep the mesh from the tooth heel
through the volume (to the toe). The FE model for the TA bevel gear tooth is shown in Fig. 5b. The
displacements over the inner tooth hub and the cut boundaries of the bevel gear tooth were constrained. A
1000(cos 20◦) N tangential load is applied as an external force on the FE model, at its HLSTC.

The material used in the simulations is structural steel, with a Young modulus of 2.1×1011 Pa, a Poisson
ratio of 0.3, and a density of 7870 kg/m3.

4.2. FEA Results
A set of iterations was conducted to reach the optimum shape profile of the spur and bevel-gear tooth-root,

as described in this section.
The optimization procedure stopped at its seventh iteration in the spur gear case, when the maximum

stress reduced from the previous iteration is smaller than 0.01 MPa. The maximum von Mises stress versus
the number of iterations is illustrated in Fig. 7, from whichwe can observe that the maximum von Mises
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(a) Tredgold Plane
(b) Lofted cut

Fig. 6. TA bevel gear CAD modelling

stress value shows a significant decrement at the first and second iterations; then, it starts settling down to
the minimum.

Fig. 7. Maximum vM stress vs. number of iterations
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(red) fillets

The von Mises stress distributions of the two optimum filletsare plotted in Fig. 9. The maximum von
Mises stress valuesσvm for different root curve shapes are compared and listed in Table 3. It is apparent that,
compared to its circular counterpart, the geometric optimum is capable of reducing theσvm by 15.1%. The
structural optimum shows a better performance in the reduction of σvm, of around 21% over the conventional
circular fillet.

In addition, the von Mises stress distributions of the threeabove-mentioned fillet types are plotted in
Fig. 8, in which the abscissa denotes the node number along the gear tooth-root profile. It is observed that
the structurally optimum fillet not only reduces the maximumvon Mises stress, but also smoothes the stress
distribution along the whole root profile, thereby meeting the design objectives.
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(a) Geometrically optimum (b) Structurally optimum

Fig. 9. vM stress distribution plots of the spur gear

Table 3. Maximum von Mises stress in different spur gear tooth-root curve types

root curve type
von Misesσvm

(MPa)
Circular 3.301

Cubic spline (geometrically optimum) 2.802
Cubic spline (structurally optimum) 2.6084

In the bevel gear case the optimization procedure stopped atthe sixth iteration. A similar behaviour is
observed here: starting from an initial guess, the maximum von Mises stress drops significantly in the first
and second iterations, and then starts settling down to the minimum, as shown in Fig. 10.

Fig. 10. Maximum vM Stress vs. number of itera-
tions

Fig. 11. vM stress distribution on circular (black),
geometrically optimum (blue) and structurally op-
timum (red) fillets

The von Mises stress distributions of the optimum fillets areshown in Fig. 12, and the maximum von
Mises stress values are given in Table 4. The von Mises reduction rate is 12.6% in the geometrically optimum
fillet and 15.9% in its structurally optimum counterpart, compared with the circular-filleted tooth-root.

5. CONCLUSIONS

The tooth-root profile optimization for spur and bevel gears, designed for maximum load-carrying capac-
ity, is reported in this paper. Under working bending load, the maximum von Mises stress of the proposed
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(a) Geometrically optimum (b) Structurally optimum

Fig. 12. von Mises stress distributions for bevel gear

Table 4. Maximum von Mises stress in different bevel gear tooth-root curve types

root curve type
von Misesσvm

(MPa)
Circular 53.88

Cubic spline (geometrically optimum) 47.093
Cubic spline (structurally optimum) 45.294

spline-filleted root profiles were analyzed and compared with their circular-filleted counterparts. Both the
geometric and the structural optima are analyzed. The maximum von Mises stress reduction in the struc-
tural optima was 15.1% and 21% in spur and bevel gears respectively, of the corresponding circular-filleted
counterpart profile. Moreover, the stress distributions along the gear tooth-root profiles was also studied,
by recording the maximum von Mises stress value at each node of the FE model on the root profile. The
stress distribution of the structural optimum root profileswere the smoothest. The stress concentration of
the proposed root profiles were significantly reduced.
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APPENDIX: MATRICES RELATED TO THE G2-CONTINUITY CONDITIONS

A = ∆θ























2 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
...

...
. . . . .. .. .

...
...

0 0 · · · 1 4 1 0
0 0 0 · · · 1 4 1
0 0 0 · · · 0 1 2























, C =
1

∆θ























c11 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · 1 −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 cn′′n′′























(11)

in which n′′ = n+2, c11 =−1−∆θ/ tan(γ0) andcn′′n′′ =−1−∆θ/ tan(γn+1).
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P= ∆θ






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



















1
∆θ

0 0 0 · · · 0 0

1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
...

...
.. . . . . . . .

...
...

0 0 · · · 1 4 1 0
0 0 0 · · · 1 4 1

0 0 0 · · · 0 0
1

∆θ





























,Q =
1

∆θ































1
tan(γ0)

0 0 0 · · · 0 0

−3 0 3 0 · · · 0 0
0 −3 0 3 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · −3 0 3 0
0 0 0 · · · −3 0 3

0 0 0 · · · 0 0
1

tan(γn+1)































(12)
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