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ABSTRACT

Increasing the strength of gears is a recurrent demand frdaostry. The authors report a novel approach
to the design of tooth-root profile of spur and bevel gearsh Wie aim of reducing stress concentration,
thereby increasing the gear-tooth load-carrying capadigvel gears generated using the Tredgold ap-
proximation are considered. An iterative co-simulatiomsisting of tooth-root profile shape synthesis via
nonlinear programming and finite element software toolsoisdacted, with the purpose of forming the
tooth-root geometry with the minimum stress concentratitime proposed designs are capable of reducing
the stress concentration by 21.0% in spur gears and 15.9%vel gears, over their conventional circular-
filleted counterparts. Hence, the results showcase an atirevand sound methodology for the design of
the tooth-root profile to increase gear load-carrying ceypac

Keywords: spur gear; bevel gear; tooth root bending stress; cubinesplfinite element analysis.

OPTIMISATION DE LA RACINE DES PROFILS DE DENTS POUR LAR ESISTANCE
MAXIMALE: DES ENGRENAGES PLANAIRES ET CONIQUES

RESUME

Augmenter la résistance des dents d’engrenages est iggabge récurrente dans les industries. Les
auteurs proposent une nouvelle approche a la conceptiden rdeine des profils de dents des engrenages
planaires et coniques, afin d'augmenter la résistance mgemages. Des engrenages conigues générés en
utilisant I'approximation de Tredgold ont &été étudi€me procédure itérative de co-simulation consistant
en la synthése de la racine des profils de dents, par progeiammon-linéaire et analyse par éléments
finis, fut mise en place, afin de diminuer la concentrationadedraintes a la racine des profils de dents. Les
profils ainsi proposées permirent de réduire la concioirales contraintes de 21.0% pour les engrenages
planaires et 15.9% pour les engrenages coniques. Donedelats presentent une nouvelle méthodologie
pour la conception de la racine des profils de dents des eaggenayant le but d’augmenter la résistance
de ces derniers.

Mots-clés : engrenages planaires ; engrenages coniques ; résistangeathages ; spline cubiques ; analyse
par éléements finis.

1. INTRODUCTION

A growing demand for gears with higher load-carrying catyaand increased fatigue life accompanies
the fast development of automotive transmissions. In otdexchieve this goal, several avenues can be
explored: novel materials; novel manufacturing techrégue novel gear-tooth geometries [1]. As the key
component in gear transmission systems, the stability elfability of the gears play a significant role in
the performance of the gear transmission system. Underimgpdonditions, the gear tooth is exposed to
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a combination of several effects, such as stress condentrahisalignment, tooth error, etc. [2]. When
transmitting loads, each gear tooth behaves as a cantitmam, subjected to bending. The maximum
bending stress of the gear tooth evolves from the accuroalafi normal stress under bending and appears
at the root fillet. The gear tooth root is exposed to a comluinadf both shearing and bending [3]. The
stress intensity factor and working life of a gear tooth ighty dependent on the tooth-root stress [4].
The first initial crack at the gear tooth often appears atoregithat are affected the most by root stress
concentration. Moreover, fatigue failure of tooth-rootalso caused by the stress at the tooth root [1].
Within the development history of gear design, gear tootigda due to bending is always a challenge to
designers.

Precise verification of tooth strength calls for applicatad experimental technologies, such as electrore-
sistive or piezoresistive. Though experimental testingdsessary for verifying numerical results, this is
often expensive and complicated [5]. The Finite Elementhiddt(FEM) is a computational tool most of-
ten used to calculate bending stress, strain and deformi&jo Finite Element Analysis (FEA) provides a
reliable tool to asses the response of physical systemsumdsar nonlinear conditions [7].

The circular-filleted tooth root is widely used in the desifthe gear tooth-roots [1, 8]. Due to a curvature
discontinuity at the blending points of the circular filleitkvthe involute tooth profile and the root circle,
stress concentration occurs at those points; such discitigtis cause a drastic jump in stress values, thereby
leading to mechanical failure. Hence, the optimizationhef gear tooth-root profile plays a significant role
in reducing stress concentration, thereby improving geath strength.

In this paper, an innovative optimization procedure conmgjishape synthesis via nonlinear programming
and FEA software tools is developed to produce the toothfilbet with the minimum stress concentration,
in spur and bevel gears. The FEA results show a significanictidh in the maximum von Mises stress of
the optimum tooth profiles when compared with their circalaunterparts.

2. GEOMETRIC MODELLING OF THE GEAR TEETH

2.1. Spur Gears

Figure 1 illustrates the 2-D geometry of an involute spurgeath, with the dimensions listed in Table 1.
The parameter values of the spur gear used in this simulatiok are those reported by Ristic [5]. The gear
tooth is built using the coordinate fran@xywith origin at the center of the gear, jysaxis being the axis of
symmetry of the gear tooth.

Table 1. Dimensions of the spur gear model

number of teetiN 20
modulem (mm) 24
face width (mm) 50
pressure anglec (°) 20
addendum circle radiug, (mm) 264
pitch circle radiug, (mm) 240
base circle radiug, (mm) 225.526
dedendum circle radiug (mm) 210

The involute profile has found widespread applications iargeoth design, due to its ease of high-
precision manufacturing, low transmission error, silepeération as well as simplicity of assembly, arising
from its robustness to errors in the distance between gesr [8¢10]. The involutéB, shown in Fig. 1 is
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Fig. 1. Geometry of the spur gear tooth

defined by

{xim,:rb(costthsint) o<t < 5_1 )

Yinv = Ip(Sint —tcost) - = g

The curve segmerit, which blends the involute at poiBtand the dedendum circle at poidt functions
as the gear tooth-root filletr is commonly produced in gear design as a circular arc coomefd, 11].
However, the problem with the circular root fillet lies in thiaprovides only first order geometric conti-
nuity, G, that is, position and tangent-continuity, which give® fis stress concentration due to curvature
discontinuities at the blending points [12]. Further, tbeadl stress concentration caused by geometrical
discontinuities may lead to mechanical failure [13]. Inartb reduce the stress concentration, an important
criterion, G?-continuity at the blending of two given curve segments,uthde satisfied.G?-continuity
means position, tangent and curvature continuity over engijeometric curve [14]. Hence, the problem at
hand is formulated as the optimization of the root profilepggemented by an optimum curve connecting
the blending point® andD with G2-continuity as smoothly as possible

Further, to investigate the bending strength of the geaht@normal forcd, the full load transmitted,
as shown in Fig. 1, is considered to be exerted at the higloést af single tooth contact (HPSTC) of the
gear—PoinH in the same figure.
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2.2. Bevel Gears

A virtual spur gear as illustrated in Fig. 2, is generated via the projectiom dfredgold approximation
(TA) bevel gear onto the Tredgold plane [15-17]. The Tredgane, by definition, is tangent to the back
cone of a bevel gear, or in other words, it rolls on the surfadbe back cone [18]. Therefore, for a bevel
gear set, the Tredgold plane for each gear rolls on the sudbihe corresponding back cone.

The virtual spur gear has a pitch radigsequal to the back cone distance and same pitch as the bevel
gear [19]. The number of teetl’ of the virtual spur gear is given by

2y
p
wherep is the circular pitch measured at the heel. In this lig\itis not necessarily an integer.

N’ (2)

Fig. 2. Straight bevel gear parameters

A bevel pinion belonging to a differential gear set manufeadt by Linamar Corporation, an industrial
partner of the Automotive Partnership Canada project at Mt@iversity, is used in this research. The
parameters of the bevel pinion are given in Table 2.

3. METHODOLOGY

3.1. Curve Synthesis

For the purpose of simplifying the curve-synthesis procedwe resort to hon-parametric cubic splines
to discretize the tooth-root fillet [20]. Figure 3 includeslketch of the blending segments—the involute
and part of the dedendum circle—by means of a third 6né&,he coordinate framexgye is built with the
ye-axis parallell toOB, as shown in Fig. 1. Notice that the segments in this figureajeto a tooth in the
lower half of the gear, as opposed to the tooth of Fig. 1, fseexd representation.
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Table 2. Dimensions of bevel pinion

number of teetiN; 9
mating gear teethl, 14
modulem (mm) 5.7658
pressure anglec (°) 24
pitch angled (°) 32.735
face angled; (°) 39.588
root angled; (°) 24.530
face widthb (mm) 22.5
virtual gear number of teetN’ 11

Further,n+ 2 points{FL}g+1 are defined along the mid-curve segméntby their polar coordinates
P (px, 6k), with Py(po, 8o) = BandPy.1(pn+1, 6nr1) =D. For pointR, let 6 = 6p+kAB, fork=1,2,--- .n+1,
the uniform incremenf\6 being

Bk1— 6o

A== T (3)
n+2

Hence, the polar coordinatépy}; < are assembled into one+ 2)-dimensional array as
P =[po.p1,,Pnsa)" 4)

By the same token, the arrays of first- and second-orderat®s®@g with respect to the polar coordin&ef
Fig 3,p’ andp”, respectively, are defined likewise.

According to the definition of non-parametric cubic spling®e cubic polynomiajo(0) between two
consecutive supporting poing andP. 1 takes the form [21]

P(0) = Ak(8 — 6)° + Bi(6 — )%+ Ci(6 — ) + Dy (5)

YE

A
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A

Fig. 3. The blending of the involute and root circle segmesimg aG2-continuous curve fillet
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inwhichg <0 <6;and 0<k<n.

By virtue of theG2-continuity condition, i.e., two curvatures coincidingtiaé kth blending pointpx, o’
andpy” and their counterparts at their neighbouring segmentsoarel to satisfy the linear relationships
below [21]:

Ap”"=6Cp, Pp'=Qp (6)

with matricesA, C, P andQ provided in the Appendix.
Further, the curvature & takes the form

_ PE+2(p)* — oy
[0 + (py)?1%/2
Now, if a curve with "the smallest possible curvature is duligan obvious candidate is a curlewith

a curvature distribution that carries the minimum root-megquare value of its curvature in the segment
comprised betweeB andD of Fig. 1. Hence, the optimization problem is formulated as

(7)

1 2 - T
z=— kZkaKk —min, x= o1 - P
subject to (8)

1
ko(p,p',p") =ke =0, Kni1(p,p’,p") =kKp = o

n
in whichwi > 0 denotes the normal weight at poiit obeying 5 wi = 1. Besides, with reference to Fig. 1,
k=1

the additional boundary constraints at the two blendingtscare

{90:95:0 {pozpszrbtanzm

I o 9
9n+1:9D:§—Zm ’ pn-l-l:pD:COSZm_rd ()

The optimization problem thus formulated is a constrainaalinear program, which can be solved using
a suite of methods, the one used here is the in-house dedeldpa (orthogonal decomposition algo-
rithm) [22].

The foregoing curve synthesis procedure is used for spdrbamel-gear tooth-root profile optimization.
While its implementation is obvious in the spur gear casehawel gears it depends on the method of
generation. In this research work the TA method is consiiaebevel-gear generation.

3.2. Co-simulation

Upon the geometry synthesis of the root profile, the optitiomaproblem formulated in Sec. 3.1 is im-
plemented via a co-simulation among: the ODA package, imptged in Matlab; modelling, using Solid-
Works Application Programming Interface (API); and FEAingsa customized ANSYS Parametric Design
Language (APDL). Figure 4 illustrates the flowchart of tharg@oth-root profile optimization procedure.
In the spur gear case, both modelling and FEA were done on AN&Vng APDL. However, bevel-gear
modelling, which requires more advanced solid modellimiptéques, was implemented using a customized
macro in VisualBasic.NET format on SolidWorks. The softevpackages were coupled together to interact
in an automated iterative procedure to solve the structptiiization problem.

The procedure starts with equal weights for all supportioonts, i.e.,wx = 1/n, the coordinates for all
supporting points being generated to form the initial ctdptined tooth profile. The optimum found with
equal weights is termed thgeometric optimum Based on thé3?-continuity constraints, the geometric
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Fig. 4. Root curve optimization flowchart

optimum is capable of reducing the stress concentratiomnresextent. However, there is still room for
improvement. Hence, a set of iterations is conducted, tafiadoot profile with minimum von Mises stress
distribution.

The supporting-point coordinates of the geometricallyiroptn fillet obtained from Matlab are used
to model the gear tooth. Then, a static analysis is conduayedpplying the boundary conditions and
loadings, which produces the von Mises stress for each stupg@oint along the root-fillet profile. Aiming
to alleviate the stress concentration along the splinest fllifferent weights in eq. (8) are assigned to each
supporting point according to their corresponding von lgisteess values, as reported by ANSYS:

W = (10)
2 S
i=1

The idea is that curvature values are penalized by meansightseroportional to their von Mises stress
values. The problem previously formulated is solved againwith non-uniform weight coefficients, until
the von Mises stress distribution becomes fairly uniforthe Pprocess helps approach Venkayya'’s critetion
of achieving an almost uniform stress distribution at thoed region of the optimum fillet [23]. This fillet
is termed thestructural optimum

1According to Venkayya's criterion, the optimum design ref@ the one in which the strain energy per unit volume stapst@nt.
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4. SIMULATION RESULTS

4.1. FE Model Formulation

As shown in Fig. 5a, quadratic 4-node PLANE182 elements wseel on ANSYS 14.0 to discretize the
spur-gear tooth domain. The mesh is refined at the gear tdieth fior the purpose of accurate prediction
of the stress concentration at the fillet. The boundary ¢mmdi on the generated FE model are defined by
displacement constraints over the inner rim and the othertwrder surfaces, which separate the modeled
gear tooth from the rest of the gear body. Besides, a @@3®0) N tangential load that the gear transmits
is applied as an external force on the FE model, at its HPSU&agely distributed along the contact line
over the tooth width.
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Fig. 5. Finite Element Mesh

The bevel gear tooth model was generated on SolidWorks 26d. $han imported into ANSYS for static
analysis. To model the TA bevel gear, the virtual spur geahernTredgold plane is used to create the tooth
cut, as shown in Fig. 6. A 2D sketch of the tooth space of thiadirspur gear is created on the Tredgold
plane and tapered smoothly towards the apex and used toecge#r. Through rotation copying the tooth
spaces, the full gear geometry was accomplished.

The bevel gear tooth is meshed using 8-node brick SOLID18mehts which are suitable for the 3D
modelling of solid structures. The sweep-mesh approaclsasl to sweep the mesh from the tooth heel
through the volume (to the toe). The FE model for the TA bewsrgooth is shown in Fig. 5b. The
displacements over the inner tooth hub and the cut boursdafithe bevel gear tooth were constrained. A
100Q(cos 20) N tangential load is applied as an external force on the FEamatlits HLSTC.

The material used in the simulations is structural steeh wiYoung modulus of 2 x 10 Pa, a Poisson
ratio of 0.3, and a density of 7870 kg°.

4.2. FEA Results

A set of iterations was conducted to reach the optimum shayfdgoof the spur and bevel-gear tooth-root,
as described in this section.

The optimization procedure stopped at its seventh iterdticthe spur gear case, when the maximum
stress reduced from the previous iteration is smaller th@h BIPa. The maximum von Mises stress versus
the number of iterations is illustrated in Fig. 7, from whigle can observe that the maximum von Mises
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Tredgold Plane

(a) Tredgold Plane

(b) Lofted cut

Fig. 6. TA bevel gear CAD modelling

stress value shows a significant decrement at the first amth@eterations; then, it starts settling down to
the minimum.
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Fig. 7. Maximum vM stress vs. number of iterations

The von Mises stress distributions of the two optimum fillete plotted in Fig. 9. The maximum von
Mises stress valuas,, for different root curve shapes are compared and listedleTa It is apparent that,
compared to its circular counterpart, the geometric optinisicapable of reducing tha,,, by 151%. The
structural optimum shows a better performance in the réslucf o,,, of around 21% over the conventional
circular fillet.

In addition, the von Mises stress distributions of the thabeve-mentioned fillet types are plotted in
Fig. 8, in which the abscissa denotes the node number alengetéxr tooth-root profile. It is observed that
the structurally optimum fillet not only reduces the maximuon Mises stress, but also smoothes the stress
distribution along the whole root profile, thereby meeting tlesign objectives.
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Fig. 9. vM stress distribution plots of the spur gear

Table 3. Maximum von Mises stress in different spur gearttaobt curve types

von Misesaym
root curve type (MPa)
Circular 3.301
Cubic spline (geometrically optimun) 2.802
Cubic spline (structurally optimum) 2.6084

In the bevel gear case the optimization procedure stopp#tkatixth iteration. A similar behaviour is
observed here: starting from an initial guess, the maximamMises stress drops significantly in the first
and second iterations, and then starts settling down to thiemam, as shown in Fig. 10.
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geometrically optimum (blue) and structurally op-
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Fig. 10. Maximum vM Stress vs. number of itera-
tions

The von Mises stress distributions of the optimum fillets sltewn in Fig. 12, and the maximum von
Mises stress values are given in Table 4. The von Mises rieduette is 12.6% in the geometrically optimum
fillet and 15.9% in its structurally optimum counterpartpgmared with the circular-filleted tooth-root.

5. CONCLUSIONS

The tooth-root profile optimization for spur and bevel gedesigned for maximum load-carrying capac-
ity, is reported in this paper. Under working bending lod maximum von Mises stress of the proposed
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Fig. 12. von Mises stress distributions for bevel gear

Table 4. Maximum von Mises stress in different bevel geatttaoot curve types

von Misesoym
root curve type (MPa)
Circular 53.88
Cubic spline (geometrically optimumn) 47.093
Cubic spline (structurally optimum) 45.294

spline-filleted root profiles were analyzed and compareti #ieir circular-filleted counterparts. Both the
geometric and the structural optima are analyzed. The maxiwvon Mises stress reduction in the struc-
tural optima was 15.1% and 21% in spur and bevel gears reaggcof the corresponding circular-filleted
counterpart profile. Moreover, the stress distributiormglthe gear tooth-root profiles was also studied,
by recording the maximum von Mises stress value at each nbtte d-E model on the root profile. The
stress distribution of the structural optimum root profiesre the smoothest. The stress concentration of
the proposed root profiles were significantly reduced.
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APPENDIX: MATRICES RELATED TO THE G2-CONTINUITY CONDITIONS

21 0 0 -~ 0 0] [c11 1 0O O 0 0
14 1 0 --- 00 1 -2 1 0 --- O 0
01 4 1 ... 00 1 0 1 -2 1 -~ O 0
A=A |: 0 b C:E : : e : : (11)
00 1 4 10 o o .- 1 -2 1 0
00 0 --- 1 4 1 o o o .- 1 -2 1
o o o0 -~ 0 1 2 L0 O o --- 0 1 cyn]

inwhichn” =n+2,c;;=—-1—A0/tan(y) andcyy = —1— A6/ tan(yh1).
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