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ABSTRACT
This paper describes the design and preliminary testing of an autonomous omnidirectional robot to be used

for moving radioactive materials while minimizing human exposure. The robot, called the OmniMaxbot,
uses the Robot Operating System (ROS) to allow the individual components to communicate as well as to
control the movement. The hardware and software used in the OmniMaxbot are also explained. While still
in development preliminary testing has shown promise. More work is required before the OmniMaxbot is
considered to be fully functional however.
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1. INTRODUCTION

One of the main motivations for robotics is removing humans from environments that may cause bodily
harm. That is the motivation behind this project. In the manufacturing of uranium fuel for the nuclear
industry there is a process called Fluorination. This process involves mixing fluorine and uranium in a flame
reactor to produce uranium hexafluoride. Approximately ten percent of the material is output as waste. This
waste, in the form of uranium ash, falls into cans at the bottom of the reactors, where it is then removed
by workers. This step carries the highest risk to workers of being exposed to radiation. The OmniMaxbot
was developed in order to mitigate this risk. The OmniMaxbot is a fully autonomous robot for handling
hazardous materials. It is omnidirectional, allowing it to move in the tight spaces between the reactors. This
paper will explain the design and programming used for the OmniMaxbot. The remainder of the paper is
laid out at follows: Section 2 explains some of the related literature, Section 3 gives a brief overview of
the OmniMaxbot, Section 4 provides details on the hardware used, Section 5 explains the software used,
Section 6 outlines the completed testing and their results, Section 7 discusses future testing, and Section 8
lays out the conclusions.

2. RELATED WORK

Automating material handling vehicles is not a new idea. One of the most common types of automonous
vehicles used in manufacturing plants is the Automated Guided Vehicle, or AGV. According to Vis [1] AGVs
were first introduced in 1955. There are many different types of AGV designs and navigation systems, based
primarily on the work they are doing and the environment they must work in. AGVs are primarily used for
repetitive material handling jobs.

There are many navigation methods available for autonomous vehicles. Berman and Edan [2] developed
a method for navigating multiple AGVs using a fuzzy behaviour based navigation scheme. The navigation
method was based on two cases, whether or not the AGV in questions was carrying a load. If the AGV
had a load, then it would drive directly to the drop off location. If the AGV did not have a load, then it
would decide which work station to service based on which station was closest to the AGV and the due
time of the product. The AGV would then determine the shortest path between its current location and the
goal workstation using the configuration space and the A* search algorithm. The path was represented by a
series of waypoints. The AGV would follow the waypoints until it reached its goal. Right of way rules were
implemented so that multiple AGVs could be used in one area. During the path planning stage, each part
of the path between waypoint was given a classification. The classification decided if obstacles in that area
were assumed to be another AGV or not. If not, the AGV would bypass obstacles detected in that area. If
so, the AGV would wait to see if the obstacle attempted to bypass it. If, after a short wait, the obstacle did
not move then the AGV would bypass it.

Hentschel et al. [3] developed a method of autonomous navigation for a forklift. The method is based on
a series of predefined waypoints. A continuous-curvature path is built using line and polar spline segments.
In addition to the path, a velocity profile is constructed for the fork lift. A graph-based routing algorithm
was used to combine different routes to find the most efficient path. Using this method it was found that
speeds of up to 1.7 m/s could be achieved.

Simultaneous Localization and Mapping (SLAM) is used in this project to build a map of the Omni-
Maxbot’s environment. There is a great deal of research being done in the area of SLAM. Tuna et al. [4]
compared SLAM using three different map representations, each with three different localization methods.
The map representations were occupancy grid map, ladmark-based map, and topological map. The local-
ization methods were the Extended Kalman Filter (EKF), the Compressed Extended Kalman Filter (CEKF),
and the Unscented Kalman Filter (UKF). The tests explored the relationship between map accuracy and
CPU processing power for each of the localization methods. It was found that the CEKF worked best when
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there are lots of natural and artificial landmarks.
Durrant-Whyte and Bailey presented a two part tutorial on SLAM [5, 6]. The first article started with

a background of SLAM research. It goes on to explain SLAM in Bayesian form and its further evolution.
They then go on to explain SLAM using two different methods, the EKF method and the Rao-Blackwellized
Particle Filter (RBPF) method. The OmniMaxbot uses the RBPF method. The second tutorial by Durrant-
Whyte and Bailey looks at some of the existing literature on SLAM with a focus on computation complexity,
data association, and environmental representation.

3. SYSTEM OVERVIEW

The purpose of the OmniMaxbot is to pick-up cans of radioactive ash and move them to a waste handling
location. This must be performed autonomously in order to limit the possibility of worker exposure to
radiation. The OmniMaxbot must be omnidirectional in order to fit into the tight spaces it will be working
in. In order to achieve omnidirectional motion, mecanum wheels are used. The OmniMaxbot lifts the cans
using forks. The height of the forks is determined using InfraRed (IR) range finders. The cans are found
using a camera detecting a series of AR codes attached to the cans. This is used to line the robot up with the
cans and to determine when the cans are close enough to be picked up.

The OmniMaxbot uses laser range finders to build a map of its environment and for navigating within the
map. It also uses a Microsoft Kinect to build a point cloud of the area hidden by the forks. This point cloud
is converted into laser scans, also for use with the autonomous navigation system.

The start, pick-up, and drop-off locations are all stored on the OmniMaxbot. When it is activated, the
map is loaded and the robot’s initial position is set. The robot makes its way to the pick-up location using
the software which will be described in Section 5. Once it is in position, the stereovision camera detects
the can, lines up with it, and then approaches it. When the can is close enough, the forks are raised to lift
the can off of the ground. The OmniMaxbot then drives to the can drop-off location, lowers the forks, and
backs up until the camera determines that it is far enough to clear the forks. The robot then returns to its
start location.

4. ROBOT SETUP

Figure 1 shows the completed OmniMaxbot. The frame of the robot is built using 80/20. This is extruded
aluminium, giving the OmniMaxbot good strength for its weight. The forks are made of welded steel. The
system is designed to lift loads of 500 kg.

As stated in Section 3, the OmniMaxbot uses mecanum wheels. These wheels consist of a hub wheel and
a series of rollers which are at a 45◦ to the wheel axis. As the wheels turn, friction causes the rollers to turn.
This provides a force perpendicular to the axis of the hub wheel. By using four of these wheels, each with
its own motor, the OmniMaxbot can travel in any direction. An image of a mecanum wheel can be seen in
Figure 2.

The OmniMaxbot uses a variety of sensors. The most prominent of these are the two SICK LMS100
Laser Range Finders (LRFs). Each sensor has a 270◦ scanning angle, 25-50 Hz scanning frequency, and a
20 metre effective range [8]. In order to achieve a 360◦ scan about the robot one LRF faces forward and
one faces rearward. In addition to being used for map building, the LRFs are also used for navigation and
obstacle detection.

Due to the location of the LRFs the forks interfere with the scans. This is even more pronounced when
there is a can in the forks. In order to see the area blocked by the forks, a Microsoft Kinect sensor is used.
The Kinect is mounted above the fork frame so that it will see past cans when they are in the forks.

In order to identify the cans and determine their position relative to the OmniMaxbot, a Point Grey
Research BumbleBee2 Stereovision camera is used. The BumbleBee2 has two 0.8 megapixel cameras,

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2015 3



Fig. 1. The OmniMaxbot as seen from opposite corners.

Fig. 2. A mecanum wheel [7].
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3.8 mm focal length, and connects using a Firewire 1394a port [9].
To determine the height of the forks, there are two Sharp IR sensors. These are connected to an Arduino

Uno board. As the board only needs to convert the raw sensor data into a distance value and send that to the
laptop it was determined that nothing more powerful was required.

Several motors are required for the OmniMaxbot to work. Four NPC-T74 motors are used to turn the
mecanum wheels. These motors run at 24-36 V and have a 20:1 gear ratio. Their performance parameters
can be found at [10]. The motors are equiped with US Digital E5 optical encoders. These encoders provide
1,250 counts per revolution, or 5,000 pulses per revolution with quadrature. Further information on the
encoders can be found at [11]. The encoders are used to calculate the odometry of the robot.

The T74s are controlled using two Roboteq AX2850 motor controllers. Information on these drivers can
be found in the operations manual [12]. The AX2850s have two channels, therefore the front set of motors
and rear set of motors are each run by a separate motor controller.

The forks are moved using Phidgets 2370 motors. These are controlled by Phidgets 1065 motor drivers.
The forks are kept steady using linear rails as guides.

To improve the accuracy of the pose estimation, the OmniMaxbot is equipped with a CH Robotics UM7
Attitude and Heading Reference System (AHRS). The UM7 uses three axis accelerometers and rate gyros
to provide data on the robot’s movement [13].

Two computers are used to control the OmniMaxbot. The first is a computer mounted directly to the
OmniMaxbot. This computer is used to receive sensor data, process the information, and perform the
autonomous navigation. A workstation laptop is used to control the robot computer over a network from a
distance. This laptop sends commands such as what programs to run, to control the deadman switch, and to
teleoperate the OmniMaxbot when required.

5. PROGRAMMING

The OmniMaxbot uses the open source Robot Operating System (ROS) to allow the individual parts
to communicate. According to the ROS website [14], ROS provides device drivers, packet management,
message passing, and more. ROS is open source to allow robot developers to use software created by others
in their own projects rather than having to reinvent the wheel. ROS Hydro was the version used in this work.
Figure 3 shows the ROS nodes and topics used in the navigation system of the OmniMaxbot. Three basic
parts of ROS are nodes, topics, and packages. Nodes are individual ROS executables. These are generally
written in C++ or Python. Packages are collections of related nodes. Topics are where data is transferred.
Nodes publish data to topics, or subscribe to topics to receive data from them.

Several ROS packages were used, either directly or in a modified form, for the OmniMaxbot. The standard
ROS packages can be found on the ROS wiki [15]. The packages built specifically for the OmniMaxbot can
be found on the following online public repository: https://github.com/orgs/mars-uoit/.

The ax2550 package is used to control the AX2850 motor drivers. The package used for the OmniMaxbot
is a modified version of the original version found at [16]. This package consists of four nodes. The
ax2550_front and ax2550_rear nodes are used to send the speed commands to the motors and the encoder
data to ROS. The omni_cmd_vel node is used to calculate what velocity each motor needs to turn at in order
to move as needed. The inverse kinematic equations used for the OmniMaxbot were taken from Doroftei et
al. [7]. These equations were modified slightly as they used a right positive y-axis where ROS uses a left
positive y-axis. This node takes the desired overall linear and angular velocities as inputs and outputs the
required speed each mecanum wheel needs to turn at in order to achieve those velocities. The final node
in this package is the omni_odom node. This node takes in the encoder data from the motor drivers and
publishes the robot’s odometry.

One of the drawbacks of this system is that the wheel odometry is unreliable. This is because of how the
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Fig. 3. The nodes, topics, and connections of the OmniMaxbot’s navigation system.
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meccanum wheels work. There is a great deal of slip with the wheels and the kinematics cannot accurately
predict how fast the rollers rotate. Odometry is required for the autonomous navigation to work as the
system needs to know what speed the OmniMaxbot is travelling at and in what directions. In order to
overcome this limitation the laser_scan_matcher package was used. The documentation for this package
can be found at [17]. Though the documentation is for ROS Fuerte the package has been updated to work
with Hydro. The package works by comparing sequential laser scans. New scans are compared to the
previous scan to determine how much translation and rotation there is. In order to minimize the effect of
sensor noise a keyframes method is used rather than the basic scan-to-scan method. What this means is
that rather than comparing each scan to the previous scan, one scan is taken, the keyframe, and subsequent
scans are all compared to this. A new keyframe scan is taken every time the robot translates or rotates by
a set amount. In this way small changes from sensor noise is ignored and only larger changes that can
be attributed to movement are accepted. This package has two primary outputs. The first is a transform
from the odom frame to the base_link frame. This is necessary for both the map making and autonomous
navigation systems. It also outputs a geometry_msgs/PoseStamped message. This is a pose estimate of the
robot relative to the map frame with a time stamp of when the estimate was made.

A new node was developed for the laser_scan_matcher package in order to estimate the velocity of the
OmniMaxbot. This was required as the move_base package, explained later is this section, needs to know
what speed the robot is travelling at in order to work. This is usually determined using odometry, but again
that does not work well for this robot. In order to estimate the OmniMaxbot’s speed in each direction the
PoseStamped message output by the base laser_scan_matcher node is used. The PoseStamped message
gives the OmniMaxbot’s position and orientation relative to the map and a time stamp. Consecutive mes-
sages are compared to determine the changes in translation along the x and y axes, rotation about the z-axis,
and time. The OmniMaxbot’s velocities are determined by dividing the changes in translation and rotation
by the change in time.

The LMS100s made use of the lms1xx package. This driver package was originally developed by the
Robot Control and Program Recognition Group, now the Robot Programming and Pattern Recognition
Group [18]. The package was rereleased and is now maintained by Clearpath Robotics [19]. The lms1xx
package takes the laser scan data from the LMS100 and converts it into a sensor_msgs/LaserScan message,
which is usable by other ROS packages.

The Kinect uses the openni_launch package in order to run. This package, found at [20], takes in raw
data from the sensor and converts it into usable data. The output from the Kinect, in this case the rectified
depth image and the camera information, is used by the depthimage_to_laserscan package [21]. This
package takes in the depth image generated by the Kinect and converts it to a laserscan message. To do
this the user specifies a height range, a minimum distance to consider, and a maximum distance. All of the
values within the height range are looked at and the closest distance in each pixel column of the image is
kept. If the distance is outside of the stated bounds, it is set to ±inf, otherwise it is kept.

The gmapping package is used to build a map of the OmniMaxbot’s environment. This map is then used
as the basis for the autonomous navigation. This package was developed by Grisetti et al. [22, 23]. The
gmapping package builds a 2 dimensional occupancy grid map using the laser scans, odometry, and AHRS
data. As the name implies, the map is in the form of a grid. Each cell is given a value of either unknown,
unoccupied, or occupied. An occupancy grid map of the Mechatronic and Robotic Systems (MARS) Lab
at the University of Ontario Institute of Technology (UOIT) can be seen in Figure 4. This package uses
a modified Rao-Blackwellized Particle Filter with adaptive resampling. More information on this package
can be found on the ROS wiki [24] or on the OpenSLAM website [25].

To navigate autonomously the OmniMaxbot uses the amcl package [26]. This package uses an adaptive
Monte Carlo particle filter with KLD-sampling. This method is described by Fox [27]. As inputs, the
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Fig. 4. An occupancy grid map of the MARS Lab built using the OmniMaxbot and the gmapping package. White
cells are unoccupied, black cells are occupied, and grey cells are unknown.

package takes in the map of the robot’s environment, an initial pose estimate, the transform tree, and the
laser scans. It outputs a pose estimate for the robot, a transform between the map frame and the odometry
frame, and the particle set from the filter.

As stated in Section 4, a Bumblebee2 stereovision camera was used to detect the cans and determine their
position relative to the camera’s position. The camera is controlled using the camera1394stereo package
[28]. The camera_calibration package was used to calibrate the camera in order to get rectified images.

The ar_sys package is used to detect cans and estimate their positions. This is performed by attaching
AR codes to the cans. The length of the side of the codes is used as a parameter for the package. The
distance between the can and the camera is determined by comparing the known length of the side of the
AR code to the length of the side as reported by the camera. The package takes the rectified image and
camera information as input and outputs an image with the augmented data overlaid on it, the position and
orientation of the can, and the transform between the camera and the can.

To control the Phidgets 1065 motor controllers, used to control the motors for lifting and lowering the
forks, the motor_controller_hc_1065 node of the phidgets package was used [29]. This node is a slight
modification of the motor_controller_hc node. The main modification to the node was the inclusion of a
breaking force for when the forks are holding a can.

The final package used was the move_base package. This package uses configuration data and sensor
inputs to determine the path that the OmniMaxbot should follow to travel from its current location to the
goal. It also determines and publishes what speed the OmniMaxbot should move at.

6. PRELIMINARY TESTING

The preliminary testing was performed in several stages. The first stage was to test the individual parts to
ensure that they worked correctly. Once this was completed, subsystems were tested.

The drive system was tested first to ensure that the robot would move in a desirable fashion. First,
commands were sent to the motors directly from the Ubuntu command line. These tests were performed
while the OmniMaxbot was on jacks in case the robot reacted in an unpredictable manner. Once it was
confirmed that the system was accepting and responding to the commands, the robot was lowered to the
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Fig. 5. The initial (left) and aggregated (right) scans from the linear odometry test.

ground. A joystick was then used to control the robot. These tests determined how well the OmniMaxbot
followed changing instructions and to verify that the robot moved in the proper directions.

Once the robot was moving as expected the mapping functionality was tested. This involved driving the
OmniMaxbot with the joystick while running the gmapping package to build the map. The result of this test
can be seen in Figure 4.

The autonomous navigation was tested next. The OmniMaxbot was directed to move from its start-
ing location to a point on the map. For this part of the testing the room was clear other than a single
mock can. The results of this test were promising, but showed that more work is required. The Omni-
Maxbot was able to perform coarse navigation, but not the fine navigation required. This is believed to be
due to error in the odometry data. Due to how the mecanum wheels work, there is a great deal of slip.
This is not accounted for in the kinematic equations, making the odometry estimates inaccurate. Once the
laser_scan_matcher package was added the odometry estimates improved greatly. To test the odometry
data from the laser_scan_matcher package, two tests were performed. The first test was to check the
translation. This involved driving the OmniMaxbot towards a flat wall. The laser scans taken while driving
toward the wall were aggregated. Ideally, the aggregated scans should look like a single scan, though rea-
sonably a few centimetres of drift is acceptable. The results of this test are shown in Figure 5. The second
odometry test was to verify the rotational accuracy. This test involved taking an initial scan, rotating the
OmniMaxbot by 360◦, then taking a second scan. Ideally the scans would be right on top of each other,
however a small about of error is acceptable. The results of this test are shown in Figure 6. Once these tests
were completed the OmniMaxbot was again directed to autonomously make its way from a starting location
to a goal location on the map. This time the OmniMaxbot reached its goal without issue.

Testing the ar_sys package with the BumbleBee2 camera and mock can has also been performed. It was
found that this method works well for detecting the cans. There is approximately ±5 cm error in the depth
measurement and ±1 cm of error in the horizontal distance measurement. The spacing of the OmniMaxbot’s
forks can accommodate this level of error in the measurements of the can’s position.

7. FURTHER WORK

There is still some work required before the OmniMaxbot is at a usable level. More navigation testing
is required to ensure that the robot reaches its goal every time and to optimize the amcl and move_base
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Fig. 6. Laser scans from before (left) and after (right) the 360◦ rotation.

configuration parameters. Once this is done, the OmniMaxbot will be tested in the same area but with
obstacles added. This is to guarantee that it will be able to avoid obstacles and still make it to the goal
location.

The final stage of testing will involve integrating all of the subsystems together into a final working robot.
These tests will consist of the OmniMaxbot navigating its way to a pick-up location, approaching a can,
lifting it up, navigating to a drop-off location, putting down the can, backing away from it without hitting it,
and returning to its start location. Once the OmniMaxbot can perform this test repeatedly without error, the
OmniMaxbot will be considered fully operational.

8. CONCLUSIONS

This paper outlines the hardware and software used to build the OmniMaxbot, an autonomous hazardous
material handling robot. Preliminary testing is also explained. It was found that there is still much work to be
done before the OmniMaxbot is able to perform its duties properly, however, the initial results are promising.
Further work is required so that the OmniMaxbot will be able to achieve the goal of autonomously handling
hazardous materials.
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