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ABSTRACT 
This paper presents the dynamic model of a kinematically-redundant planar parallel manipulator and an 

optimisation method to minimise the actuator torques when the end-effector is subjected to a wrench while 
following a trajectory. A previous study proposed a kinetostatic approach to solve the same problem. The 
objective of the work presented here was to verify if the kinetostatic assumption was valid. The inclusion 
of the dynamic model in the optimisation produced some undesirable oscillations and required the use of 
a different objective function. It is shown that for the application considered, the kinetostatic approach 
provided an acceptable solution. 

Keywords: planar parallel manipulators; kinematic redundancy; dynamic analysis; optimisation. 
 

ANALYSE DYNAMIQUE ET OPTIMISATION D’UN MANIPULATEUR PARALLÈLE PLAN 
AVEC REDONDANCE CINÉMATIQUE 

RÉSUMÉ 
Ce travail présente le modèle dynamique d’un manipulateur parallèle plan avec redondance cinématique 

et une méthode pour optimiser les couples des actionneurs lorsque l’organe terminal est soumis à un torseur 
en suivant une trajectoire. Une étude précédente proposait la solution du même problème en supposant une 
analyse statique. Le but de ce travail était de vérifier si cette supposition était valide. Lorsque le modèle 
dynamique est inclus dans l’optimisation, des oscillations indésirables se produisent et une fonction 
objectif différente doit être utilisée. Il est démontré que pour l’exemple étudié, l’approche statique 
produisait une solution acceptable.   

Mots-clés : manipulateurs parallèles plans; redondance cinématique; analyse dynamique; optimisation. 
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 INTRODUCTION 

Parallel manipulators have certain advantages over serial manipulators, such as a larger payload-to-
weight ratio and higher stiffness. However, their workspaces are smaller and usually contain a large 
number of Type-2 singular configurations [1] in which they cannot sustain a wrench applied to the end 
effector.  Different types of redundancy have been proposed to reduce or eliminate these singularities. 
Actuation redundancy consists of actuating a normally passive joint in one or more branches of the 
manipulator [e.g. 2,3], or of adding an extra actuated branch or branches to a manipulator [e.g. 4,5]; the 
latter is sometimes called branch redundancy. When there is actuation redundancy, there exists an infinity 
of solutions for the actuator torques to sustain a wrench.  On the other hand, kinematic redundancy consists 
of adding extra joints and links to the manipulator [e.g. 6-12], and it can also reduce or eliminate 
singularities. In this case, there exists an infinity of solutions to the inverse displacement problem.  

 In [13], kinematic redundancy was used to optimise the actuator forces of a planar 3-PRPR1 [14] 
parallel manipulator when its end-effector was subjected to a wrench following different trajectories. It 
was assumed that the end-effector was moving slowly, as in a machining operation, and a kinetostatic 
approach was considered. The optimisation showed that the forces required by the kinematically-redundant 
manipulator were lower than those of the non-redundant 3-RPR manipulator. In particular, the 
kinematically-redundant manipulator could pass through configurations that were singular for the non-
redundant manipulator. Even if the end-effector velocity was slow, i.e., 0.005 m/s, and the actuator 
velocities were constrained to be between 0.15 m/s, the actuator accelerations were sometimes larger than 
4 m/s2. This paper includes the dynamic effects to verify if the kinetostatic assumption was valid. 

The paper is organised as follows.  The manipulators studied are first described. A kinematic analysis 
is then presented, followed by a dynamic analysis based on the Newton-Euler approach. The optimisation 
procedure used is explained, followed by results and conclusions. 

1 DESCRIPTION OF THE MANIPULATOR 
The 3-PRPR shown in Fig. 1 is similar to the well-known 3-RPR manipulator, except for an extra 

actuated prismatic joint (base prismatic joint) added to each leg between points Oi and Ai, i =1,2,3, that are 
fixed to the base and cannot rotate. All three of these actuators are aligned along the lines formed by the 
equilateral triangle generated from the base points Oi. A fixed reference frame is attached to the base centre 
at point O and a mobile reference frame is attached to the end-effector centre at point P. The orientation 
angle φ of the end effector is defined by the angle formed between the X and x axes. The prismatic actuators 
between points Ai and Bi are henceforth called the distal prismatic joints. While i denotes the leg number, 
j denotes the actuator’s placement in the leg. Note that the 3-RPR manipulator with which the results will 
be compared is obtained when i1 is set to zero and points Ai become fixed and coincident with points Oi. 

In order to model the dynamic equations, a leg i is shown in Fig. 2. Each prismatic joint is comprised 
of a cylinder and a piston. The mass of the piston of the base prismatic joint is designated by m1, while the 
mass and the moment of inertia with respect to its centre of mass of the cylinder of the distal link and of 
the piston of the distal link are denoted by m2, I2 and m3, I3, respectively. The centres of mass are shown in 
the middle of the members. Parameter r2 is the distance between the centre of gravity G2i and Ai while L3 
is the length of the distal piston members. Note that the mass and moment of inertia of the fixed cylinder 
of the base link have no effect on the dynamic equations. The mass of the platform is denoted as mp and its 
moment of inertia with respect to its centre of mass as Ip. The extremity of the piston of the base link is 

                                                      
 
 
 
1 The first number of the nomenclature indicates the number of branches, while revolute and prismatic joints are 
denoted by R and P, respectively. Actuated joints are underlined while the others are passive. 
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attached to the cylinder of the distal link. The “overhang” in the cylinder of the distal link is to allow a 
longer stroke. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. 3-PRPR manipulator. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Detailed leg of 3-PRPR manipulator. 

 

2 KINEMATIC ANALYSIS 

2.1 Velocity Analysis  
The kinematic analysis of the 3-PRPR manipulator is derived in sections 2.1 and 2.2. From Fig. 1, the 

vector loop equation can be written as  
௜۽۽ + ௜ۯ௜۽ + ௜۰௜ۯ = ۾۽ +  ۰௜ (1)۾
࢏۽۽ + ௜ଵܖ௜ଵߩ + ௜ଶܖ௜ଶߩ = ۾۽ +  ۰௜ (2)۾

where ni1 and ni2 represent unit vectors along the base link from Oi to Ai and along the distal link from Ai 
to Bi, respectively. The derivative with respect to time of ni2 and PBi produces the following quantities:  

ሶܖ ௜ଶ = ܓ)ሶ௜ଶߠ ×  ௜ଶ) (3)ܖ
۰ሶ۾ ௜ = ሶ߮ ܓ) ×  (4) (࢏۰۾

where ߠሶ௜ଶ and ሶ߮  are the angular velocities of the distal link i and of the end effector, respectively, and k 
is the unit vector pointing in the Z direction. 

The derivative with respect to time of Eq. (2) yields 
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௜ଵܖሶ௜ଵߩ + ௜ଶܖሶ௜ଶߩ + ܓ)ሶ௜ଶߠ௜ଶߩ × (௜ଶܖ = ீ܄ + ሶ߮ ܓ) ×  ۰௜) (5)۾
Angular velocity  ߠሶ௜ଶ can be eliminated by a dot multiplication with ܖ௜ଶ.  

௜ଶܖሶ௜ଵߩ ∙ ௜ଵܖ + ሶ௜ଶߩ = ௜ଶܖ ∙ ீ܄ + ሶ߮ ௜ଶܖ ∙ ܓ) ×  ۰௜) (6)۾
The last term can be rearranged as ሶ߮ ܓ ∙ ࢏۰۾) ×   ௜ଶ). Eq. (6) becomesܖ

ሶ௜ଶߩ = ௜ଶܖ ∙ ீ܄ + ሶ߮ ܓ ∙ ۰௜۾) × (௜ଶܖ − ௜ଶܖሶ௜ଵߩ ∙  ௜ଵ (7)ܖ
Multiplying Eq. (7) by i2 and noting that ߩ௜ଶܖ௜ଶ = ۰௜ −  ௜, the velocity equation in matrix form for allۯ
the legs gives 

۸௤ܙሶ = ۸௫ܠሶ  (8) 
where 

۸௤ = ቎
ଵଵܖ

୘ ∙ (۰ଵ − (ଵۯ ଵଶߩ 0
0 0 ଶଵܖ

୘ ∙ (۰ଶ − (ଶۯ
0 0 0

    
0 0 0

ଶଶߩ 0 0
0 ଷଵܖ

୘ ∙ (۰ଷ − (ଷۯ ଷଶߩ

቏ (9) 

۸௫ = ቎
(۰ଵ − ଵ)୘ۯ ୘ܓ ∙ ۰ଵ۾ × (۰ଵ − (ଵۯ
(۰ଶ − ଶ)୘ۯ ୘ܓ ∙ ۰ଶ۾ × (۰ଶ − (ଶۯ
(۰ଷ − ଷ)୘ۯ ୘ܓ ∙ ۰ଷ۾ × (۰ଷ − (ଷۯ

቏ (10) 

The vector of actuated joint velocities is given by ܙሶ = ሾߩሶଵଵ  ߩሶଵଶ ߩሶଶଵ ߩሶଶଶ ߩሶଷଵ ߩሶଷଶሿ୘ while the vector of 
the end effector’s velocity and angular velocity is ܠሶ = ሾݔሶ ሶݕ    ሶ߮ ሿ୘. 

Angular velocity  ߠሶ௜ଶ can be obtained by cross multiplying Eq. (5) with vector ni2.  
௜ଶܖሶ௜ଵߩ × ௜ଵܖ + ௜ଶܖሶ௜ଶߠ௜ଶߩ × ܓ) × (௜ଶܖ = ௜ଶܖ × ீ܄ + ሶ߮ ௜ଶܖ × ܓ) ×  (11) (࢏۰۾

where 

௜ଶܖ × ௜ଵܖ = ቀ݊௜ଶೣ
݊௜ଵ೤

− ݊௜ଶ೤
݊௜ଵೣ

ቁ  (12) ܓ

௜ଶܖ × ܓ) × (௜ଶܖ =  (13) ܓ

௜ଶܖ × ீ܄ = ቀ݊௜ଶೣ
ሶݕ − ݊௜ଶ೤

ሶቁݔ  (14) ܓ

௜ଶܖ × ܓ) × (࢏۰۾ = ௜ଶܖ)ܓ ∙ (࢏۰۾ − ௜ଶܖ)࢏۰۾ ∙ (ܓ = ௜ଶܖ)ܓ ∙  (15) (࢏۰۾
Since all the components are about the z axis, Eq. (11) becomes 

ሶ௜ଶߠ =
ଵ

ఘ೔మ
ቌൣ−݊௜ଶ೤

݊௜ଶೣ
௜ଶܖ ∙ ൧࢏۰۾ ൥

ሶݔ
ሶݕ

ሶ߮
൩ − ሶ௜ଵߩ ቀ݊௜ଶೣ

݊௜ଵ೤
− ݊௜ଶ೤

݊௜ଵೣ
ቁቍ (16) 

 

2.2 Acceleration Analysis 
The derivative with respect to time of Eq. (5) yields 

௜ଵܖሷ௜ଵߩ  + ௜ଶܖሷ௜ଶߩ + ܓ)ሶ௜ଶߠሶ௜ଶߩ × (௜ଶܖ + ܓ)ሶ௜ଶߠሶ௜ଶߩ × (௜ଶܖ + ܓ)ሷ௜ଶߠ௜ଶߩ × (௜ଶܖ + 
ܓሶ௜ଶ൫ߠ௜ଶߩ × ܓ)ሶ௜ଶߠ × ௜ଶ)൯ܖ = ீ܉ + ሷ߮ ܓ) × (࢏۰۾ + ሶ߮ ܓ) × ሶ߮ ܓ) ×  (17) ((࢏۰۾

where 
ܓ × ܓ) × (௜ଶܖ =  ௜ଶ (18)ܖ−
ܓ × ܓ) × (࢏۰۾ =  (19) ࢏۰۾−

Equation (17) becomes 
௜ଵܖሷ௜ଵߩ  + ௜ଶܖሷ௜ଶߩ + ܓ)ሶ௜ଶߠሶ௜ଶߩ2 × (௜ଶܖ + ܓ)ሷ௜ଶߠ௜ଶߩ × (௜ଶܖ − ሶߠ௜ଶߩ

௜ଶ
ଶ  ௜ଶܖ

 = ீ܉ + ሷ߮ ܓ) × (࢏۰۾ − ሶ߮ ଶ(20) ࢏۰۾ 
The third and fourth terms on the left hand side of Eq. (20) can be eliminated by dot multiplication 

with ܖ௜ଶ.  
௜ଶܖሷ௜ଵߩ ∙ ௜ଵܖ + ሷ௜ଶߩ − ሶߠ௜ଶߩ

௜ଶ
ଶ = ௜ଶܖ ∙ ீ܉ + ሷ߮ ௜ଶܖ ∙ ܓ) × (࢏۰۾ − ሶ߮ ଶܖ௜ଶ ∙  (21) ࢏۰۾

The acceleration of the distal prismatic joint is thus 
ሷ௜ଶߩ = ௜ଶܖ ∙ ீ܉ + ሷ߮ ܓ ∙ ࢏۰۾) × (௜ଶܖ − ሶ߮ ଶܖ௜ଶ ∙ ࢏۰۾ + ሶߠ௜ଶߩ

௜ଶ
ଶ − ௜ଶܖሷ௜ଵߩ ∙  ௜ଵ (22)ܖ

The angular acceleration of distal link i can be obtained by cross multiplying ܖ௜ଶ with Eq. (20). 



CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2017 5 

௜ଶܖሷ௜ଵߩ  × ௜ଵܖ + ௜ଶܖሶ௜ଶߠሶ௜ଶߩ2 × ܓ) × (௜ଶܖ + ௜ଶܖሷ௜ଶߠ௜ଶߩ × ܓ) × (௜ଶܖ = 
௜ଶܖ × ீ܉ + ሷ߮ ௜ଶܖ × ܓ) × (࢏۰۾ − ሶ߮ ଶܖ௜ଶ ×  (23) ࢏۰۾

Substituting the results of Eqs. (13) and (15) into Eq. (23) yields 
௜ଶܖሷ௜ଵߩ × ௜ଵܖ + ܓሶ௜ଶߠሶ௜ଶߩ2 + ܓሷ௜ଶߠ௜ଶߩ = ௜ଶܖ × ீ܉ + ሷ߮ ௜ଶܖ)ܓ ∙ (࢏۰۾ − ሶ߮ ଶܖ௜ଶ ×  (24) ࢏۰۾

Collecting the k components yields 
 

ሷ௜ଵߩ  ቀ݊௜ଶೣ
݊௜ଵ೤

− ݊௜ଶ೤
݊௜ଵೣ

ቁ + ሶ௜ଶߠሶ௜ଶߩ2 + ሷ௜ଶߠ௜ଶߩ = 

ቀ݊௜ଶೣ
ሷݕ − ݊௜ଶ೤

ሷቁݔ + ሷ߮ ௜ଶܖ) ∙ (࢏۰۾ − ሶ߮ ଶ ቀ݊௜ଶೣ
௜೤ܤܲ

− ݊௜ଶ೤
௜ೣܤܲ

ቁ (25) 

The angular acceleration of the distal link is thus 

ሷ௜ଶߠ =
ଵ

ఘ೔మ

ۉ

ۈ
௜ଶ೤݊−ൣۇ

݊௜ଶೣ
௜ଶܖ ∙ ൧࢏۰۾ ൥

ሷݔ
ሷݕ

ሷ߮
൩ − ሷ௜ଵߩ ቀ݊௜ଶೣ

݊௜ଵ೤
− ݊௜ଶ೤

݊௜ଵೣ
ቁ

− ሶ߮ ଶ ቀ݊௜ଶೣ
௜೤ܤܲ

− ݊௜ଶ೤
௜ೣܤܲ

ቁ − ሶ௜ଶߠሶ௜ଶߩ2 ی

ۋ
ۊ

 (26) 

The Newton-Euler approach is used here to obtain the dynamic equations of the manipulator, therefore 
the accelerations of the centres of mass of the moving links must be determined. The acceleration of the 
mass m1 is ߩሷ௜ଵ (Fig. 2). Let rG2i and rG3i denote the position vectors of the centres of mass of the cylinder 
and of the piston of the distal link i with respect to Ai, respectively. The position of the centre of mass of 
the distal cylinder of leg i is 

మ೔ீܠ
= ௜۽۽ + ௜ۯ௜۽ + ܚீ ଶ௜ = ௜۽۽ + ௜ଵܖ௜ଵߩ − ݎீ ଶ௜ܖ௜ଶ (27) 

where rG2i is the constant amplitude of the vector rG2i and is in the negative direction of ܖ௜ଶ. The derivative 
with respect to time yields 

మ೔ீܞ
= ௜ଵܖሶ௜ଵߩ − ݎீ ଶ௜ߠሶ௜ଶ(ܓ ×  ௜ଶ) (28)ܖ

The acceleration becomes 
మ೔ீ܉

= ௜ଵܖሷ௜ଵߩ − ݎீ ଶ௜ߠሷ௜ଶ(ܓ × (௜ଶܖ − ݎீ ଶ௜ߠሶ௜ଶ൫ܓ × ܓ)ሶ௜ଶߠ ×  ௜ଶ)൯ (29)ܖ
To simplify the notation, let ܖ௜ଶ఼

denote the cross product ܓ ×  ௜ଶ, i.e. a unit vector perpendicular toܖ
 ௜ଶ rotated 90 degrees in the counter clockwise direction. Equation (29) simplifies toܖ

మ೔ீ܉
= ௜ଵܖሷ௜ଵߩ − ݎீ ଶ௜ߠሷ௜ଶܖ௜ଶ఼

+ ݎீ ଶ௜ߠሶ
௜ଶ
ଶ  ௜ଶ (30)ܖ

where all the terms have been previously found. Assuming that the centre of mass of the piston of the distal 
link of leg i is in the middle of the rod, the amplitude of its position vector and its derivatives with respect 
to time are 

ݎீ ଷ௜ = ௜ଶߩ −
௅య

ଶ
 (31) 

ሶீݎ ଷ௜ =  ሶ௜ଶ (32)ߩ
ሷீݎ ଷ௜ =  ሷ௜ଶ (33)ߩ

The acceleration of the centre of mass of the piston of the distal link of leg i is found similarly, noting 
that rG3i will be in the positive  ܖ௜ଶ direction, and 

య೔ீܠ
= ௜۽۽ + ௜ଵܖ௜ଵߩ + ݎீ ଷ௜ܖ௜ଶ (34) 

య೔ீܞ
= ௜ଵܖሶ௜ଵߩ + ௜ଶܖሶ௜ଶߩ + ݎீ ଷ௜ߠሶ௜ଶ(ܓ ×  ௜ଶ) (35)ܖ

Taking the derivative with respect to time and simplifying yields 
య೔ீ܉

= ௜ଵܖሷ௜ଵߩ + ൫ߩሷ௜ଶ − ݎீ ଷ௜ߠሶ
௜ଶ
ଶ ൯ܖ௜ଶ + ൫2ߩሶ௜ଶߠሶ௜ଶ + ݎீ ଷ௜ߠሷ௜ଶ൯ܖ௜ଶ఼

 (36) 
 

3 NEWTON-EULER FORMULATION 
With the results of the preceding section, all the accelerations of the centres of mass and the angular 

accelerations of each link can be computed. Figure 3 shows the force analysis diagrams for the manipulator. 
Inertial forces and moments are not shown. From Fig. 3(b), the sum of moments about Ai yields 
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Fig. 3. Forces acting on end effector and links. 

 
௜఼ܨ−

ଶ௜ߩ = ଶܫ) + ሷ௜ଶߠ(ଷܫ − ݎீ ଶ௜ܖ௜ଶ × ݉ଶீ܉మ೔
+ ݎீ ଷ௜ܖ௜ଶ × ݉ଷீ܉య೔

 (37) 
from which ܨ௜఼

 can be computed. From Fig. 3(a), the sum of forces and sum of moments about P on the 
platform yields 

∑ ௜ܨ
ଷ
௜ୀଵ ௜ଶܖ + ∑ ௜఼ܨ

ଷ
௜ୀଵ ௜ଶ఼ܖ

+ ۴ୟ୮୮୪୧ୣୢ = ݉௣ீ܉  
∑ ۰௜۾

ଷ
௜ୀଵ × ൫ܨ௜ܖ௜ଶ + ௜఼ܨ

௜ଶ఼ܖ
൯ + ܓୟ୮୮୪୧ୣୢܯ = ௣߶ሷܫ  (38) ܓ

where Fapplied is an external force and Mapplied is the amplitude of an external moment applied to the platform, 
respectively. The three equations in (38) have three unknowns, allowing the determination of Fi, i = 1, 2,  
3. The actuator forces in the distal links can be obtained from a sum of forces along the directions of the 
pistons as shown in Fig. 3(d). 

߬௜ଶ = ௜ܨ + ݉ଷீ܉య೔
∙  ௜ଶ (39)ܖ

To determine the actuator forces in the base links, consider Fig. 3(b). Let ۴௜ = ௜ଶܖ௜ܨ + ௜఼ܨ
௜ଶ఼ܖ

. The total 
force at Ai, FAi can be obtained by the sum of forces on the distal link 

۴஺௜ − ۴௜ = ݉ଶீ܉మ೔
+ ݉ଷீ܉య೔

 (40) 
From Fig. 3(c), the actuator forces in the base links can be determined. 

߬௜ଵ − ۴஺௜ ∙ ௜ଵܖ = ݉ଵீ܉భ೔
∙  ௜ଵ (41)ܖ

For a given pose with a specified velocity and acceleration, the inverse displacement problem has an 
infinite number of solutions. When the position, velocity and acceleration of the base actuator are specified, 
the velocities and accelerations of the distal actuators can be computed from Eqs. (7) and (22), respectively, 
while the angular velocities and angular accelerations of the distal links can be computed using Eqs. (16) 
and (26), respectively. These quantities can be used to compute the accelerations of the centres of mass of 
the cylinder and piston of distal link i with Eqs. (30) and (36), respectively. All the quantities required to 
compute the actuation forces are thus known.  
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4 OPTIMISATION PROCEDURE 
The infinite number of possible solutions to the inverse displacement problem for a given trajectory 

enables the minimisation of the joint forces and singularity avoidance when the kinematically-redundant 
manipulator is considered [13]. At each point of the trajectory, an optimal value was found for the base 
prismatic joint vector containing the lengths of each base joint (ߩ௜ଵ for ݅ = 1,2, 3). Optimal values were 
found with Sequential Quadratic Programming (SQP) by the use of Matlab’s fmincon function in the 
optimisation toolbox. These optimised values were then used as an initial guess for the next trajectory point. 
For the first initial guess, the values that minimised ૌ்ૌ at the initial pose were found using Particle Swarm 
Optimisation (PSO). Constraints on the joint displacements as well as on the maximum velocity were 
implemented. For the kinetostatic analysis, the optimisation problem was formulated as: 

min
௜ଵߩ

 ૌ
்ૌ (42) 

subject to: 
௜௝೘೔೙ߩ

≤ ௜௝ߩ ≤ ௜௝೘ೌೣߩ
 (43) 

ሶ௜௝೘ೌೣߩ−
≤ ሶ௜௝ߩ ≤ ሶ௜௝೘ೌೣߩ

 (44) 
where i = 1,2,3, j = 1,2 and  is the vector of actuator forces of all six actuators.  

When optimisations were performed including the dynamics of the manipulator, the results were very 
unstable and undesirable oscillations occurred in the solutions. To remove these oscillations, the objective 
function was modified based on results proposed in [15], and a term was added to limit the angular 
accelerations of the distal links. 

min
௜ଵߩ

 ૌ
்ૌ + α ቀܾฮߠሷ௜ଶฮ

ଶ

ଶ
+ (1 − ܾ)ฮߠሷ௜ଶฮ

ஶ
ቁ (45) 

where α and b are constants and ฮߠሷ௜ଶฮ
ଶ

ଶ
 and ฮߠሷ௜ଶฮ

ஶ
 are the two-norm squared and the infinity-norm of the 

distal links’ angular accelerations, respectively. The constraint of Eq. (43) was applied but the constraint 
on the velocity was modified to reduce gradually the velocity to zero when the joint length approached one 
of its limits: 

ە
ۖ
۔

ۖ
ሶ௜௝หߩหۓ ≤ ሶ௜௝೘ೌೣߩ

௜௝೘೔೙ߩ   ݂݅                                       
+ ௗ௘௟௧௔ߩ ≤ ௜௝ߩ ≤ ௜௝೘ೌೣߩ

− ௗ௘௟௧௔ߩ

หߩሶ௜௝ห ≤
ఘሶ ೔ೕ೘ೌೣ

ఘ೏೐೗೟ೌ
൫ߩ௜௝ − ௜௝೘೔೙ߩ  

൯         ݂݅  ߩ௜௝ < ௜௝೘೔೙ߩ  
+                                  ௗ௘௟௧௔ߩ

หߩሶ௜௝ห ≤
ఘሶ ೔ೕ೘ೌೣ

ఘ೏೐೗೟ೌ
൫  ߩ௜௝೘ೌೣ

௜௝ߩ  ݂݅        ௜௝൯ߩ − > ௜௝೘ೌೣߩ
−                                   ௗ௘௟௧௔ߩ

 (46) 

where delta defines the distance from the limit of the actuator length where the velocity starts decreasing. 
The optimisation procedure is as follows for each step of the trajectory: 
 for the specified pose, compute the coordinates of points Bi; 

 compute the coordinates of Ai based on the values of optimisation variable i1; 

 numerically compute the velocities and accelerations of the base prismatic joints ߩሶ௜ଵ and ߩሷ௜ଵ; 
 compute the velocities and accelerations of the distal prismatic joints using Eqs. (7) and (22), 

respectively; 

 compute the angular accelerations of the distal links and the accelerations of the centres of mass 
of the cylinder and the piston of the distal links using Eqs. (26), (30) and (36), respectively, 

 compute the required forces in the distal and base prismatic joints using Eqs. (39) and (41), 
respectively; 

 minimise the objective function given in Eq. (45) while satisfying the constraints on the lengths 
(Eq. 43) and the velocities (Eq. 46); 

 use the optimised value of i1 at step k as the initial guess for the next step k + 1 of the trajectory. 
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Values of α = 1000 and b = 0.5 were used when computing the objective function of Eq. (46). The other 
variables that are used as constraints were given the values shown in Table 1. 

Table 1. Constraints for PRPR manipulator simulations 

௜௝೘ೌೣߩ ௜௝೘೔೙ߩ 
ሶ௜௝೘ೌೣߩ   ௗ௘௟௧௔ߩ 

0.29 m 0.01 m 0.25 m/s 0.02 m 

5 RESULTS AND DISCUSSION 
A spiral trajectory was used to demonstrate the force optimisation capabilities. The non-redundant and 

redundant manipulators were compared to quantify the improvement. The base triangle for both 
manipulators has sides of length OiOj = 0.3 m. As for the end effector, the sides of the equilateral triangle 
are of length BiBj = 0.05 m. The dynamic parameters used for the simulation are shown in Table 2. 

Table 2. Dynamic parameters 

Mass (kg) mp 1.5 
m1 0.5 
m2 0.8 

m3 0.5 

Moment of Inertia (kg m2) I2 0.005 
I3 0.003 

Ip 0.0075 
Centre of gravity of distal links 
(cylinder and piston) (m) 

r2 0.2 
L3 0.3 

 
The trajectory and the constant orientation workspace of the 3-RPR manipulator are shown in Figure 4. 

A 100 N force is acting at the centre of the end-effector in the direction opposite to its motion, i.e., tangent 
to its trajectory, and a counter clockwise moment of 10 Nm is also applied on the platform. The end-
effector is kept at a constant orientation of π/6 rad. The velocity was set at 0.007 m/s, a value slightly larger 
than that used in [13] to increase the dynamic effects. With larger velocities, the optimisation was not able 
to satisfy the velocity constraints of the actuators. 

The trajectory chosen is a logarithmic spiral described by the polar equation 
ߩ = ܽ݁௞ఉ  with  ݇ =  (47) ߰ݐ݋ܿ

where  is the spiral radius for a given angle , which varies from 0 to 2π for the trajectory shown in Fig. 
4, a is a constant that was set to 0.03 m, and ߰ represents the angle between the tangent and the radial line 
from the origin of the spiral, (-0.05, 0) m, to the radial point (, ). The trajectory was chosen in order to 
cover a large portion of the workspace. This was done to display the advantages of the redundant 
manipulator when faced with near-singular end-effector configurations. Angle ߰ was chosen as 75o. The 
wrench applied on the manipulator in this case is thus 

۴ = ሾ−100 cos(ߚ + ߰) , −100 sin(ߚ + ߰);  10ሿ୘ N; Nm (48) 
When the velocity is constant along the spiral, the elapsed time between two angular positions is not 

constant for a constant increment . Since the velocity is constant, the elapsed time t between two angles 
i -1 and i can be computed with 

ݐ∆ =
∆௅

௏
=

ଵ

௏
׬ ටߩଶ +

ௗఘ

ௗఉ

ଶ
ߚ݀

ఉ೔

ఉ೔షభ
=

௔√ଵା௞మ

௞௏
(݁௞ఉ೔ − ݁௞ఉ೔షభ) (49) 

where L is the length of the curve between the angles. This time is used to numerically compute the 
velocities and accelerations of the base prismatic joints of the redundant manipulator. Increments of π/200 
were used. The time required to complete the trajectory at a constant velocity of 0.007 m/s is 72.6 s. The 
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range limits on the prismatic joints in Eq. (43) were set to 0.01 m to 0.29m, while the prismatic actuators 
were limited to 0.25 m/s. 

Figure 5 presents the actuator forces when the 3-RPR manipulator follows the spiral trajectory.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Constant orientation (π/6) workspace of the 3-RPR and spiral trajectory 

 
 

 
Fig. 5. Actuator forces for the 3-RPR manipulator for the spiral trajectory 

 
To optimise the redundant manipulator, the initial start point xo= [0.255, 0.212, 0.244]T m was found 

using a PSO to minimise ૌ்ૌ at the initial pose. The initial start point has a significant effect on the 
optimised solution. Figure 6 presents the optimised results for the 3-PRPR manipulator following the spiral 
trajectory, in which the actuator lengths, actuator velocities and actuator forces of the manipulator are 
shown. A comparison of Figs. 5 and 6(c) clearly shows that the forces requires for the redundant 
manipulator are less than those for the non-redundant manipulator. The maximum forces for the redundant 
manipulator are less than half of the maximum forces for the non-redundant manipulator. 
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 (a) 

 
 (b) 

 
 (c) 

Fig. 6. (a) Actuator lengths, (b) actuator velocities and (c) actuator forces for the 3-PRPR manipulator for the 
spiral trajectory 

 
As mentioned previously, the dynamic effects were included to verify if the kinetostatic approach used 

in [13] was valid. The maximum acceleration of the actuators (not shown) for the results shown in Fig. 6 
is 2.85 m/s2. Even if this acceleration is not that large, it was not obvious if some of the other components, 
for example the normal acceleration, could produce large forces that would significantly affect the required 
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forces in the actuators. Fig. 7 shows the actuator forces that are due to the dynamic effects only. A 
simulation was done setting the masses and moments of inertia to zero. The actuator forces due to the 
dynamic effects only are obtained by subtracting the forces obtained with zero mass from the forces 
obtained in Fig. 6c. Fig. 7 shows that the forces due to the dynamic effects are indeed negligible compared 
to the forces shown in Fig. 6c.  

The results show that for this particular application the kinetostatic approach was valid. However, the 
dynamic effects would be important if the wrench applied on the end-effector were smaller or if the velocity 
of the end-effector were larger. If the constraints on the velocities of the actuators were relaxed, the 
dynamic effects would also increase. It should be noted that even if the inclusion of the dynamics does not 
significantly modify the results for the application studied here, it did however create difficulties during 
the optimisation. The objective function used in [13] produced large oscillations and unstable results when 
the dynamic equations were used in the optimisation. 

 
 

Fig. 7. Actuator forces due to dynamic effects for the 3-PRPR manipulator  

  

6 CONCLUSIONS 
The dynamic model of a kinematically-redundant planar parallel manipulator was presented and an 

optimisation approach was developed to minimise the actuator torques when following a specified 
trajectory. The results were compared with a non-redundant manipulator and with a kinematically-
redundant manipulator using a kinetostatic approach. The results show that smaller torques are required by 
the redundant manipulator compared to those of the non-redundant manipulator. In addition to requiring 
smaller forces, it was shown in [13] that the kinematically-redundant manipulator can pass through 
configurations that are singular for the non-redundant manipulator. 

The inclusion of the dynamic forces produced some undesirable oscillations if the same objective 
function that was used in the kinetostatic approach was used. A term had to be added to the objective 
function to limit the angular accelerations of the distal links to remove the oscillations. For the example 
studied here, the assumption that a kinetostatic approach could be used [13] proved to be valid. The 
decision to use a kinetostatic approach or to include the dynamics depends on the amplitude of the wrench 
applied on the end-effector, on the velocity of the end-effector and on the constraints on the velocities of 
the actuators.   
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