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ABSTRACT
The projective geometric properties of cross ratio and harmonic sequence are used to explain how an

elegant projective geometric computational method works and why. Namely, to answer the question “why
does the projective transformation that sends the vertices of a square onto the vertices of an arbitrary convex
parallelogram or trapezoid, also map the maximum area ellipse (circle) inscribing the square onto the maxi-
mum area ellipse inscribing either the parallelogram or trapezoid, but not for an arbitrary convex quadrangle
in general”? In this paper we discuss the nature of the relationships among the points comprising a complete
quadrangle. These relationships are examined in the context of the cross ratio of four points on a line in
general and the special case of a harmonic sequence in particular. From these relationships, the answers to
the posed question, as well as several others, are revealed.

Keywords: cross ratio; harmonic sequence; projective and affine transformations.

RAPPORT ANHARMONIQUE, DIVISION HARMONIQUE ET DES ELLIPSES DE PLUS
GRANDE SURFACE INSCRIVIANT DES QUADRANGLES SPÉCIFIQUES

RÉSUMÉ
Les propriétés géométriques projectives du rapport anharmonique et de la division harmonique expliquent

le fonctionnement d’une méthode de calcul géométrique projective élégante. Qui peut résoudre la question
suivant : “pourquoi la transformation projective qui transpose les sommets d’un carré a ceux d’un parallélo-
gramme convexe arbitraire, ou trapézoïdale, trace également l’ellipse de surface maximale (cercle) insérant
le carré sur l’ellipse de surface maximale inscrivant soit le parallélogramme, soit le trapéze, mais pas pour
un quadrangle convexe arbitraire en général” ? Dans cet article, nous discutons de la nature des relations
entre les points constituant un quadrangle complet. Ces relations sont examinées dans le contexte du rapport
anharmonique de quatre points d’une ligne en général et du cas particulier d’une division harmonique en
particulier.

Mots-clés : rapport anharmonique ; division harmonique ; les transformations projectives et affines.
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1. INTRODUCTION

This paper presents the answers to questions raised by results that appeared to be a geometric anomaly
presented in [1], where an algorithm is presented that determines the largest area ellipse inscribing either
convex parallelograms or trapezoids. While the algorithm identifies an ellipse that inscribes an arbitrary
convex quadrangle with no parallel edges, the identified ellipse does not, in general, possess the largest area.
These results underscore that projective and affine transformations which map collinear points onto collinear
points do not, in general, preserve area ratios. They are nonetheless preserved by these transformations in
two very specific circumstances. The present reader may wish to ask two questions: why is this problem of
any interest at all; and what geometric reasons are there to account for these curious results?

The answer to the first question can be found in the literature. For example error and covariance ellipses
subject to linear constraints are important in statistical analysis. Consider systems of design or measurement
variables in an electrical or mechanical system. An error ellipse is a way of visualising the confidence
interval of normally distributed data [2]. While covariance is a measure of how changes within one variable
are related to changes in a second; the covariance between two variables, therefore, becomes a measure of
to what degree each variable is dependent upon the other. In statistical analysis the covariance ellipse of
n separate variables, given distinct data points, can be generated as an n× n matrix [2]. The diagonal of
the matrix represents the variance of each variable within the data set, while each non-diagonal element
represents the covariance of each variable with another. The indices of the matrix element indicates which
two variables are involved. For a two variable system the matrix is 2× 2 and symmetric, possessing a
form identical to that of the quadratic form of an ellipse. The largest area ellipse indicates the maximum
covariance between the variables.

Performance indices for machine design are used to compare specific elements of capability. Redundantly
actuated parallel mechanisms have operational force outputs that are not unique; these forces do not corre-
spond to a unique set of joint forces, which can help reduce the effect of singularities [3–5]. Analysis of
kinematic isotropy or the capacity of a mechanism to change position orientation, and velocity given its pose
in the workspace yields insight regarding velocity performance [6]. In this context, the area of the ellipse
inscribing the arbitrary polygon defined by the reachable workspace of the redundantly actuated parallel
mechanism is proportional to the kinematic isotropy of the mechanism. In [3, 5] the approach to identifying
the maximum area inscribing ellipse is a numerical problem, essentially fitting the ellipse inscribing the
linear constraints defining the velocity profile of the mechanism by starting with the unit circle.

The energy dissipated in an oscillating mechanical system when plotted as a damping force-displacement
curve always encloses an area called the hysteresis loop [7]. The area of the loop is the energy loss or
work done by the damping force per cycle. For purely mechanical viscous shock absorbers, the loop is an
ellipse. If the damping and displacement are linearly constrained then the maximum area inscribing ellipse
is of interest. Moreover, the inertia ellipsoid of a rigid body represents the relationship between its moment
of inertia about an axis and its instantaneous kinetic energy [7, 8]. The principal axes of the ellipsoid are
those of the body’s inertia tensor. An ellipsoid is generated by rotating an ellipse about its major axis. The
potential for constrained optimisation applications in this area of study is intriguing!

To the best of the author’s knowledge, there are only a handful of papers that report investigations into
determining maximum area ellipses inscribing arbitrary polygons. The dual problem of determining the
polygons of greatest area inscribed in an ellipse is reported in [9]. While interesting, this dual problem is not
germane to determining the maximum area ellipse inscribing a polygon. Three papers by the same author
[10–12] appear to lead to a solution to the general problem of finding the largest area ellipse inscribing an
n-sided convex polygon, however the papers focus on the proof of the existence of a solution rather than an
explicit algorithm for computing the ellipse equation or shape coefficients.

In this paper we revisit the projective extension of the Euclidean plane approach to identifying the coor-
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dinate transformation that maps the vertices of a unit square to those of a convex quadrangle, then using the
transformation to map the parametric equation of the unit circle inscribing the square to one of an ellipse
inscribing the quadrangle, originally presented in [13]. The curious result that the approach leads to the
maximum area ellipses that inscribe convex parallelograms and trapezoids observed in [1] is explained in
terms of projective geometry, namely the cross ratio and harmonic sequence of four points on a line, along
with the dual entities of polar lines and pole points. Note that in this work the ellipse must touch all edges
of the quadrangle, there can be other interior ellipses with larger area that don’t touch all edges [14].

2. MATHEMATICAL BACKGROUND

The geometry of planar four sided polygons and curves, along with the projective geometric invariants of
cross ratio and harmonic sequence, have all been the subject of intense study since antiquity [15]. In this
section we briefly discuss the relevant properties in subsections describing: the complete quadrangle; the
cross ratio and a special germane case called harmonic sequence; projective and affine transformations; and
finally relevant properties of parallelograms and trapezoids.

2.1. Complete Quadrangle
A complete convex quadrangle is a configuration consisting of four coplanar points, no three of which

are collinear, defining the four quadrangle vertices, together with its six sides determined by pairs of these
vertices. Sides not on the same vertex are called opposite. The edges are the four line segments joining
sequential vertices. A convex quadrangle is one whose edges do not intersect, except at its vertices. In other
words, the edges of a convex quadrangle do not self-intersect. The triangle determined by the points of
intersection of opposite sides is called the diagonal triangle, whose vertices are the diagonal points of the
quadrangle. For the complete quadrangle illustrated in Fig. 1, the vertices are points A, B, C, and D, while
the diagonal points are O, E, and F . Point Q is the point of intersection of the diagonal line f containing
vertices B and D and the diagonal line g containing the two diagonal points E and F .
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Fig. 1. Complete convex quadrangle.

A projective correlation in a plane in which the points and lines correspond doubly is called a polarity
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[16]. An important relevant polarity concerning conics are the dual projective elements of polar lines and
corresponding pole points. The polar line to a point on a nondegenerate point conic is the tangent line to the
conic at that point, while the pole point to a polar line of a line conic is the tangent point on that line . In the
context of conics that inscribe a quadrangle, the edges are polar lines with respect to the conic, lines a, b, c,
and d in Fig. 1 and dually the corresponding tangent points are the pole points.

It is well known that all second order planar curves, i.e. conics, which contain the four vertices A, B, C,
and D of a given convex quadrangle establish a one parameter family of curves, a so called pencil of point
conics: PABCD [17]. Its dual counterpart is a pencil of line conics Pabcd , which is the set of all line conics
that contain the four edges of a given quadrilateral. The diagonal trilateral e f g, see Fig. 1, is a common polar
trilateral of all curves in Pabcd , which means that e, f , and g are the polar lines of Q := f ∩g, P := e∩g, and
O := e∩ f , respectively, with respect to any curve k ∈Pabcd . The corresponding pole triangle has vertices
O, P, and Q. The midpoints of the three diagonals of the complete quadrangle are all always collinear. These
are the midpoints of the distances between points A and C on line e, points B and D on line f and points E
and F on line g. We label these midpoints T , S, and R, and the line on which they lie, m.

Since we are imposing the condition that the quadrangle ABCD is convex, point O always lies on the
interior, whereas P, Q, E, and F always lie on the exterior. The points P, Q, E, and F are always collinear,
laying on line g. Again, because of the convexity condition, point O is always a finite (proper) point, whereas
points P, Q, E, and F can all be either finite or infinite (improper). The relative locations of these four points
on line g yields a classification scheme for quadrangles. A convex quadrangle can either possess no parallel
edges, a pair of opposite parallel edges or two pairs of opposite parallel edges. The presence of a pair, or
pairs, of opposite parallel edges will place some or all of these four points on the line at infinity. Because
these four distinct points lie on the common line g, there are only four cases that can occur [18].

1. Parallelogram case: all four points P, Q, E, and F are points at infinity and hence line g is the line at
infinity L∞.

2. Trapezoid case: points P and Q are finite, while one of points E or F is finite and the other is at
infinity.

3. Kite case: points E and F are finite, while one of points P or Q is finite and the other is at infinity.

4. General case: all four points P, Q, E, and F are finite points.

Since we are interested in answering the questions raised in [1], our focus in this paper will be on the first
two cases: parallelograms and trapezoids.

2.2. Cross Ratio
The concept of cross ratio is derived from the relative positions of four collinear points and is widely

believed to have been known since antiquity [19]. The cross ratio of four points on a line in a specified se-
quence is the only invariant of projective geometry and is the fundamental invariant in every linear geometry
[20], including Euclidean. It can be analytically defined as [19]: given four distinct collinear points in the
sequence A, B, C, and D on a projective line having homogeneous coordinates (a0 : a1), (b0 : b1), (c0 : c1)
and (d0 : d1), respectively, then the real number

CR(A,B;C,D) =

∣∣∣∣ a0 a1
c0 c1

∣∣∣∣ ∣∣∣∣ b0 b1
d0 d1

∣∣∣∣∣∣∣∣ b0 b1
c0 c1

∣∣∣∣ ∣∣∣∣ a0 a1
d0 d1

∣∣∣∣ (1)
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is the cross ratio of the four points in the order A, B, C, D. Evaluating the first determinant in Eq. (1) yields
a0c1− c0a1 which can be interpreted in a metric way as the directed distance from A to C. With the use of
this metric concept the cross ratio of the four collinear points can also be expressed as the ratios of directed
distances along the line [21]:

CR(A,B;C,D) =

(
AC
BC

)(
BD
AD

)
. (2)

The values of CR = 0, CR = ∞, and CR = 1 cannot
occur for four distinct and finitely separated points.
Consider the four distinct and collinear points in the
order A, B, C, D, and the Euclidean directed distance
interpretation of cross ratio. The value of the cross
ratio is given by the ratio of the directed distances
as the product of ratios in Eq. (2). Considering that
equation, the value of CR = 0 requires that points
A and C coincide and/or points B and D coincide. If
CR = ∞ then points A and D coincide and/or points B Fig. 2. Planar 4R linkage.
and C coincide. Finally, if CR = 1 then points A and B coincide and/or points C and D coincide. Hence,
these three values are not in the set of possible values for the cross ratio of four distinct collinear points.

If one of the points along the line is at infinity, then the ratio containing the homogenising coordinate that
is 0 is simply not included in the computation [19, 20, 22]. Moreover, when C is midway between A and B
while D is at infinity then CR =−1 and the four points are said to be a harmonic quadruple or in a harmonic
sequence [23]. Consider this situation illustrated in Fig. 2. Let the coordinate origin be at point A and AB
the direction of increasing coordinates. Because point D is at infinity, we ignore the ratio of the directed
distances BD and AD, leaving only the ratio

CR(A,B;C,D) =
AC
BC

=
d/2−0
d/2−d

=
d/2
−d/2

= −1. (3)

Regardless, any four finite points on a line whose cross ratio is CR = −1 are in a harmonic sequence.
Complete quadrangle points E, F , P, and Q as in Fig. 1, regardless of finiteness, always lie in a harmonic
sequence in the order E, F , P, Q [23]. Since this is the value of the cross ratio of these particular four
collinear points, this value is preserved under any linear transformation whatsoever. This is a harmonic
property of all complete convex quadrangles and is stated more formally here in Proposition 1 [22].

Proposition 1 Two opposite vertices of a complete quadrangle are separated harmonically by the points
in which their diagonal is met by the other two diagonals.

Proof of Proposition 1: the proof of Proposition 1 requires Lemma 1.

Lemma 1 If α , β , γ , and δ are distinct collinear points or concurrent coplanar lines, then

CR(α,β ;γ,δ ) = CR(γ,δ ;α,β ) =
1

CR(α,β ;δ ,γ)
.

Proof of Lemma 1: to prove Lemma 1 we use two theorems from projective geometry [19, 22, 24].

Theorem 1 The value of the cross ratio of four distinct collinear points or concurrent coplanar lines,
remains unchanged when any two of the four elements are interchanged simultaneously
with the other two.
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Theorem 1 states that the value of a cross ratio is unchanged by reversing the order of elements in both the
first and second pairs or of the inner and outer elements or of the first and second pairs. This means

CR(α,β ;γ,δ ) = CR(β ,α;δ ,γ) = CR(δ ,γ;β ,α) = CR(γ,δ ;α,β ). (4)

Theorem 2 The value of the cross ratio of four distinct collinear points or concurrent coplanar lines, is
changed to its reciprocal when the order of the elements in either the first or second pair is
reversed.

Theorem 2 means that

CR(β ,α;γ,δ ) =
1

CR(α,β ;γ,δ )
or, CR(α,β ;δ ,γ) =

1
CR(α,β ;γ,δ )

. (5)

Clearly, Lemma 1 follows directly from Theorems 1 and 2.
Now, to prove Proposition 1 we consider the complete quadrangle illustrated in Fig. 1 with edges AB, AD,

BC, and CD. We consider the diagonal points E and F to be opposite vertices as well as the points P and Q
in which their diagonal EF is met by diagonals AC and BD and show that CR(E,F ;P,Q) = −1. Points E
and F can be considered opposite vertices since they are the points of intersection of opposite edges AB, CD
and AD, BC. Choose vertex A as the centre of projection and centrally project line g onto line f . Points E,
F , P, and Q then project centrally through vertex A onto points B, D, O, and Q, respectively. This projection
is represented in projective geometric symbols as

EFPQ =
A

∧
BDOQ. (6)

Central projection is a collineation that preserves the cross ratio [22], hence

CR(E,F ;P,Q) = CR(B,D;O,Q). (7)

Now, with vertex C as the projection centre, project line f onto line g so that

BDOQ =
C

∧
FEPQ. (8)

The projection through C yields

CR(B,D;O,Q) = CR(F,E;P,Q). (9)

From Equations (7) and (9) we have

CR(E,F ;P,Q) = CR(F,E;P,Q). (10)

Now, relying on Lemma 1 we can write

CR(F,E;P,Q) =
1

CR(E,F ;P,Q)
. (11)

Finally, substituting Eq. (11) into Eq. (10) we obtain

(CR(E,F ;P,Q))2 = 1. (12)

Since the cross ratio of four distinct points on a line in a specific order can be thought of as representing
the ratio of division of directed distances then the cross ratio CR(A,B;C,D)< 0 if and only if the point pairs
A, B separate C, D. Otherwise the cross ratio will be a positive number. Points E and F always separate
points P and Q in the way we have defined a general complete quadrangle. Moreover, the cross ratio of four
distinct points must exclude the values 0, 1, and ∞. In the case of Eq. (12), we therefore must infer that
CR(E,F ;P,Q) =−1. This completes the proof of Proposition 1.

The value of the cross ratio depends upon the order of the four points. There are 24 distinct permutations
of four distinct points and there is the same number of cross ratios. However, there are only six distinct cross
ratio values for four distinct collinear points, occurring in sets of four, as required by Theorem 1.
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2.3. Projective and Affine Transformations
The projective transformation group in the projective plane P2 may be thought of as 3×3 matrix operators

that are collineations. It is important to note that an n+ 1 dimensional homogeneous coordinate space is
required to analytically describe the elements of an n dimensional projective space. These matrices are
non-singular by definition. They are sometimes referred to as structure matrices [25] since changing the
structure of the matrix changes the character of the geometry it represents. A coordinate transformation of
P2 may be represented as

T =

 t00 t01 t02
t10 t11 t12
t20 t21 t22

 , (13)

where the nine matrix elements ti j are arbitrary real numbers meeting the only condition det(T) 6= 0. As
homogeneous coordinates are used the matrix T corresponding to a particular projective transformation is
only determined up to a scalar factor ρ 6= 0. Hence, the projective group of all collineations in P2 has eight
independent parameters and the cross ratio of four collinear points is the only invariant.

The affine transformation group in the affine plane A2 is a subset of the projective group. Because of the
use of homogeneous coordinates, only six of the elements are arbitrary, with two exceptions: t01 = t02 =
0; and the determinant t11t22− t21t12 6= 0. The affine group may be considered as being richer than the
projective group because the geometry defined on the affine plane is due to the existence of more invariants
belonging to the transformation group. While the distance between two points is not invariant under an affine
transformation, ratios of distances are. In particular, affine transformations send equal distances into equal
distances and preserve ratio of division, thus sending midpoints into midpoints [22]. Affine transformations
preserve the between-relation and hence the property of being a segment, directed distance, angle, n-sided
polygon or pair of equal vectors. These transformations multiply the areas of all triangles by a constant
value, which is equal to the determinant of the associated transformation. Under any affine transformation
the image of a conic section is a conic section of the same type, but not necessarily of the same eccentricity
and is degenerate only if the original conic is. Finally, affine transformations preserve the line at infinity,
and of course, the cross ratio [22].

2.4. Relevant Properties of Parallelograms and Trapezoids
It is well known that the closed second order curve possessing the largest area that inscribes a square is

a circle. The pole points between the circle and the square it inscribes are the midpoints of the four edges,
while the centres of both circle and square are coincident. Five distinct pole points in general, no three
collinear, are needed to uniquely determine a point conic. Dually, five polar lines, no three coincident, are
required to uniquely define a line conic. This means that a convex quadrangle, which provides only four of
the five required constraints, must possess a one parameter family of inscribing ellipses. One and only one
possesses the largest area [11].

Given an arbitrary convex quadrangle, if the interior diagonals intersect at their midpoints then the quad-
rangle is a parallelogram and all inscribing ellipses are centred at the diagonal’s point of intersection [24],
as in Fig. 3. Alternately, with reference to Fig. 1, if the interior diagonals do not intersect at their midpoints
the one parameter family of inscribing ellipses are all centred at points along the line segment joining the
diagonal midpoints T and S on line m [24]. The degenerate bounding ellipses in the one parameter pencil
inscribing any convex quadrangle, are the two diagonals whose centres are at the diagonal midpoints T and
S, respectively as in Fig. 3.

Consider the parallelogram illustrated Fig. 3. The affine transformation that maps a square to a paral-
lelogram preserves the property that the largest inscribing ellipse, among the pencil of inscribing ellipses
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Fig. 3. Pole points and centre of largest area ellipse inscribing a parallelogram and a trapezoid.

centred at the intersection of the diagonals AC and BD, has pole points Pa, Pb, Pc, and Pd located at the mid
points of the edges [22]. The diagonal line g is the line at infinity, L∞, containing points P, Q, E, and F .

Two opposite edges in a trapezoid are always parallel, see Fig. 3. The lines containing the two non parallel
edges always intersect in a finite point, which we call F . As one can easily check, the diagonal’s intersection
point O is distinct from both their midpoints T and S. The centres of the ellipses inscribing the trapezoid lie
on the open line segment with endpoints T and S. The inscribing ellipse with the greatest area has its centre
M at the midpoint of T and S [24]. The coordinates of this point are the geometric centre, or barycentre, of
the trapezoid determined by the relation M0

M1
M2

 =
1
4

 A0
A1
A2

+
 B0

B1
B2

+
 C0

C1
C2

+
 D0

D1
D2

 .

The following statements apply to the trapezoid in Fig. 3, but apply equally to any trapezoid with appropriate
relabelling. The pole points of the area maximising ellipse on the parallel edges AB and CD are the midpoints
Pa and Pc of these edges. The pole points Pb and Pd on the non parallel edges AD and BC are on the line
through O parallel to AB and CD. Moreover, the five points Pa, M, O, Pc, and F are always collinear [24].

3. ANSWERS TO THE QUESTIONS

Two distinct sets of four distinct points in the projective plane P2 uniquely determine a projective transfor-
mation if no three of the points are on the same line [22]. Let an arbitrary pair of distinct finite points (x,X)
have the coordinates x(x0 : x1 : x2) and X(X0 : X1 : X2). The projective transformation can be represented by
the vector-algebraic relationship

λ

 X0
X1
X2

= µ

 t00 t01 t02
t10 t11 t12
t20 t21 t22

 x0
x1
x2

 , (14)
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where λ and µ are arbitrary scalars. Without loss in generality, we can set ρ = λ/µ and express Eq. (14)
more compactly as

ρX = Tx, or Tx−ρX = 0. (15)

If we wish to determine the transformation T given the coordinates of four points and their images, we
must determine 12 unknowns: the eight independent elements of the transformation matrix and the four
independent scaling factors, ρi, i ∈ {1,2,3,4}.

We consider the four points a, b, c, and d, to be the vertices of the square containing the unit circle centred
on the origin of the Cartesian coordinate system in which an arbitrary quadrangle is defined. The image of
the vertices of the square are those of the quadrangle represented by the four points A, B, C, and D. Now a
set of equations must be written so that the elements of T can be computed in terms of the point and image
coordinates:

t00a0 + t01a1 + t02a2−ρ1A0 = 0,
t10a0 + t11a1 + t12a2−ρ1A1 = 0,
t20a0 + t21a1 + t22a2−ρ1A2 = 0,
t00b0 + t01b1 + t02b2−ρ2B0 = 0,

...
t20d0 + t21d1 + t22d2−ρ4D2 = 0.

(16)

Equations (16) represent 12 linear equations in 13 unknowns, 12 of which are independent, hence we can
arbitrarily scale the elements of T by 1/t00, thereby setting t00 = 1. Two examples are considered now, where
the ellipse bounding quadrangles are a parallelogram and a trapezoid, respectively. Once the transformation
has been identified the parametric equation of the unit circle is transformed to the parametric equation of the
maximum area ellipse inscribing either the parallelogram or trapezoid used to identify the transformation.
The resulting parametric ellipse equation is easily re-expressed as a homogeneous second order implicit
equation. But it is important to emphasise that T is not the matrix of point conic shape parameters, rather it
is the transformation that maps the parallelogram inscribing ellipse parametric equation to that of the square
inscribing circle. The parametric equation of the desired ellipse is obtained by multiplying the parametric
equation of the unit circle centred at the origin by T−1.

3.1. Parallelogram
Consider the square and parallelogram in Fig. 4. The homogeneous coordinates of the square vertices are

a(1 : −1 : −1), b(1 : 1 : −1), c(1 : 1 : 1), and d(1 : −1 : 1) and the image points are those of the boundary
quadrangle, which are A(1 : 2 : 0), B(1 : 10 :−1), C(1 : 14 : 3), and D(1 : 6 : 4). The projective collineation
defined by the vertices of the two quadrangles is computed to be

T−1 =
1
2

 2 0 0
16 8 4
3 −1 4

 . (17)

The transformation in Eq. (17) is clearly affine, so the properties of betweenness and of being the midpoint
between two others are preserved by the transformation [22]. Indeed, the corresponding maximum area
ellipse inscribing the parallelogram has the homogeneous implicit equation

−1075.7100x2
0−24.3179x2

1−114.4372x2
2 +354.7554x0x1 +160.2121x0x2 +22.8874x1x2 = 0. (18)

The four pole points are computed to be located at the mid points of the edges, with centre at the intersection
of the two diagonals, by virtue of these two facts the identified inscribing ellipse is the one possessing
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the maximum area. This transformation method will always result in the largest area ellipse inscribing a
parallelogram because it maps pole points located at the midpoint of each edge and will always result in an
affine transformation matrix.

Fig. 4. Maximum area ellipse inscribing a parallelogram.

3.2. Trapezoid
Consider the square and trapezoid illustrated in Fig. 5. The square has the same coordinates as before,

while the image of these points are the vertices of the trapezoid, A(1 : 2 :−1), B(1 : 6 : 1), C(1 : 5 : 4), and
D(1 : 3 : 3). The projective collineation defined by the vertices of the two quadrangles is

T−1 =
1
3

 3 0 1
12 4 4
7 2 7

 . (19)

The corresponding maximum area ellipse inscribing the trapezoid has the homogeneous implicit equation

−2.7943x2
0−0.2315x2

1−0.1210x2
2 +1.6246x0x1−0.0650x0x2 +0.1210x1x2.= 0. (20)

The Cartesian coordinates of the ellipse centre are computed to be M
(1

4(16,7)
)
, which are the same as

those of the midpoint of the open line segment joining the midpoints of the diagonals, the barycentre of
the trapezoid. Moreover, the Cartesian coordinates of the pole points of the ellipse are computed to be
Pa(4,0), Pb

(1
3(16,9)

)
, Pc
(1

2(8,7)
)
, and Pd

(1
3(8,5)

)
, the first and third corresponding to the midpoints of

the two parallel trapezoid edges, while the second and fourth pole points are on a line through point O that
is parallel to edges AB and CD, see Fig. 5. By virtue of these facts, the computed ellipse is the one in the
pencil of inscribing ellipses possessing the greatest area. But, why did this work?

Examining the transformation matrix T−1 for the trapezoid it is to be seen that it is a projective transforma-
tion, so its only invariant is the cross ratio. We already know that if A, B, Pa, and E are points on a line such
that Pa is the midpoint of the segment AB and E is the point at infinity of this line, then CR(A,B;Pa,E) =−1.
Moreover, the cross ratio of four points on a line is invariant under a central projection through some point
O to corresponding points on another line. If we project points of the line AB in Fig. 5 onto those of the line
AD using the projection centre O, the points A, Pa, B, E ∈ AB are mapped to the points A, F, D, Pd ∈ AD.
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Fig. 5. Maximum area ellipse inscribing a trapezoid.

Since CR(A,B;Pa,E) =−1, we then also have CR(A,D;Pd ,F) =−1. This proves that the projective trans-
formation that maps the vertices of a square onto those of an arbitrary convex trapezoid will also always
map the circle inscribing the square to the largest area ellipse inscribing the trapezoid.

4. CONCLUSIONS

In this paper the concepts of cross ratio and harmonic sequence were used to prove that the transformation
which maps the vertices of a square to those of either a convex parallelogram or trapezoid also maps the
circle inscribing the square to the maximum area ellipse inscribing the quadrangle, touching all four edges.
While these results may seem obvious to a geometer, they are far from obvious in the mechanism and
machine theory community.

Hence, the main contribution of this paper has been uncovering the affine and projective geometric insight
required to provide the answers to the questions posed by earlier work on quadrangle inscribing ellipse area
maximisation. The important questions raised in 2003 and 2016 in [1, 13] have finally been answered and
laid to rest. The projective transformation method can only be applied to parallelograms and trapezoids
since the pole points in a convex quadrangle with no parallel edges are not at the midpoints of the edges in
general. These results provide a new mathematical tool for velocity performance analysis of redundantly
actuated parallel mechanisms and covariance analysis, among other applications involving linear constraints
such as shock absorber design and inertia ellipsoid analysis, which can now always be used with confidence.
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