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ABSTRACT
This paper presents an explicit method to obtain the wrench capabilities of kinematically-redundant pla-

nar parallel manipulators using a wrench polytope approach. A methodology proposed by others for non-
redundant and actuation-redundant manipulators is adapted to kinematically-redundant manipulators. The
fact that the latter type of manipulators have an infinite number of solutions to the inverse kinematics prob-
lem would lead one to foresee optimization as the logical method to obtain its force capabilities. The
proposed method does not use optimization and is, therefore, exact and very efficient. The methodology
applied to a pure-force analysis of an example manipulator at a given pose produced the same results as
those obtained by others using optimization.

Keywords: force/moment (wrench) capabilities; kinematic redundancy; planar parallel manipulators.

ÉTUDE DE L’EFFET DE LA REDONDANCE CINÉMATIQUE SUR LA CAPACITÉ DES
TORSEURS D’UN MANIPULATEUR PARALLÈLE PLAN

RÉSUMÉ
Cet article présente une méthode pour obtenir explicitement les capacités des torseurs (forces/moments)

d’un manipulateur parallèle plan avec redondance cinématique. Une méthodologie développée par d’autres
pour des manipulateurs non-redondants et avec redondance d’actionnement est adaptée aux manipulateurs
avec redondance cinématique. Le fait que ces derniers possèdent une infinité de solutions au problème
géométrique inverse laisse présumer que l’optimisation serait la méthode logique pour obtenir les capacités
en force. La méthode proposée ne requiert pas d’optimisation et produit donc une solution exacte et efficace.
La méthode appliquée à une analyse en force seulement pour un manipulateur à une pose prescrite a produit
les mêmes résultats que ceux obtenus par d’autres en utilisant une méthode d’optimisation.

Mots-clés : capacités forces/moments (torseurs) ; redondance cinématique ; manipulateurs parallèles plans.

2019 CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium 1



1. INTRODUCTION

This paper proposes an explicit methodology to obtain the wrench capabilities of a kinematically-redundant
planar parallel manipulator. The wrench capability of a manipulator is defined as the maximum wrench that
can be applied (or sustained) by a manipulator for a given pose based on the limits of the actuators [1]. A
wrench capability plot for a given pose represents the applied wrench in all directions.

Kinematic redundancy (e.g., [2, 3]) occurs when extra links and actuators are added to the manipulator.
The mobility of the manipulator then becomes greater than the number of degrees-of-freedom and an infinite
number of possible solutions to the inverse kinematics problem exists. The wrench capabilities depend on
the chosen configuration. The other main type of redundancy is actuation redundancy (e.g., [1, 4, 5]) and it
is achieved either when a normally passive joint in a leg is actuated or when an extra actuated leg is added
to the manipulator. An infinite number of possible solutions for the actuator torques is possible to produce a
specified output wrench.

The wrench capabilities of a manipulator depend on its design layout, the pose, and the actuator torque
capabilities. Three different approaches have been proposed to determine the wrench capabilities: con-
strained optimization, wrench ellipsoids, and wrench polytopes [6]. A thorough presentation of the three
approaches is presented in [6] and is summarized here. When using a constrained optimization method,
an objective function that maximizes the output wrench is optimized such that the static force relation is
satisfied subject to the actuator torques remaining within their limits. These methods are normally compu-
tationally expensive and may not find the global minimum. It should be noted that the force capability of
a 3-RRR manipulator (where R denotes a revolute joint) was recently obtained as a closed-form solution
using an optimization approach [7]. A Lagrangian function was written that included equality and inequal-
ity constraints. The Karush-Kuhn-Tucker (KKT) conditions were then solved in closed-form to produce the
force polytope. When using wrench ellipsoids, the actuator torque vector is bounded by a unit hypersphere
in the joint force space. The hypersphere is then mapped into the task wrench space using the static force
equation to produce an ellipsoid. As an example, let us consider a manipulator with two actuators with the
same torque capacity. The allowable torques in joint space are represented by a circle and the wrench space
is represented by an ellipsoid. However, this circle does not provide the true representation of the torque
capacities for the preceding manipulator since the capacities are in reality a square when plotted in joint
space, where the corners of the square represent two actuators being at the maximum capacities (either +
or – for all combinations). Polytopes are generated by mapping a hypercube in joint space (a square for
the two-actuator manipulator) into the wrench space using the static force equation, producing a polytope.
The latter thus represents the exact mapping of the joint capabilities in the wrench space while the ellipsoid
provides an approximation of the mapping.

The force capabilities of redundantly-actuated manipulators have been studied by many researchers (e.g.,
[1, 8–10]). The force capabilities of kinematically-redundant planar parallel manipulators have not received
as much attention. The only work found that addressed this problem was [11]. They found the force capa-
bility of a 3-RPRR manipulator (where P denotes a prismatic joint and the underline denotes the actuated
joints) for one pose using an optimization approach. They used a Differential Evolution algorithm to obtain
the angles of the base revolute joints that maximized the output force applied by the end-effector in a speci-
fied direction. The objective function consisted of the satisfaction of the static force relation, the closure of
the kinematic chains, and the limits on the actuator torques. This method is computationally expensive.

The polytope approach [6] is used in this work to find the force polygon for kinematically-redundant
planar parallel manipulators. It results in an explicit solution to the problem of generating the force polygon
and it is computationally efficient.

The outline of the remainder of the paper is as follows: Section 2 discusses force polygons, Section 3
discusses the kinematics of the example manipulator, Section 4 presents the methodology for generating
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Fig. 1. Force polygon [12]

force polygons for kinematically-redundant parallel manipulators, Section 5 presents the force polygons for
the example manipulator, and Section 6 concludes the paper.

2. FORCE POLYGONS

2.1. Force Polygon for the 3-RRR Manipulator
Figure 1 shows the force polygon of a 3-RRR manipulator when the end-effector is located at the origin

of the fixed axes with an orientation of zero degrees. A sketch of the manipulator is superimposed on the
force polygon for a clearer understanding of what the force polygon represents. For this manipulator, the
base edge length is 0.5 m, the moving platform edge length is 0.2 m, the lengths of the first and second links
of each leg are 0.2 m, and the actuator torque limits are ±4.2 Nm [12]. At the position shown in the figure,
the force polygon indicates the maximum force the end-effector can apply (or sustain) in a direction α . The
lines in Figure 1b indicate that the actuators are at their maximum torque values. In a given direction (for
example the dashed line), the force is limited by the actuator torque capabilities. The force in the direction
indicated is attained when actuator 3 attains its maximum capacity. The other points on this line (marked
with a +) are unattainable since one or more actuators would have to surpass its maximum capacity. The
sets of parallel lines correspond to positive and negative torques of the actuators (±τimax). It should be noted
that there are 12 intersection points of the lines that correspond to the maximum torques which are the 12
possible combinations of (±τimax , ±τ jmax), i 6= j. The minimum distance between the origin and the lines of
the force polygon, represented as Fmin in Figure 1b, represents the force that can be applied in any direction.
Some authors call this the isotropic force. The maximum distance between the origin and the lines of the
force polygon, represented as Fmax in Figure 1b, represents the largest force that can be applied by the
manipulator. The procedure to obtain the force polygon is explained later.

2.2. Effect of Kinematic Redundancy on the Force Polygon
The kinematically-redundant manipulator under study is the 3-RPRR manipulator (see Figure 2). When

the prismatic joints are fixed, it becomes the well-known 3-RRR manipulator. The origin of the fixed frame
of reference is located at the geometric centre of the triangle formed by the fixed base revolute joints and
is denoted by O (not shown). The moving frame is attached to the end-effector at its geometric centre, its
origin denoted by P. In the figure P and O are coincident in the position shown. The dimensions of the 3-
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Fig. 2. 3-RPRR manipulator

RPRR manipulator are the same as those of the 3-RRR manipulator in [12] with the prismatic joints having
a nominal length of 0.2 m and are able to adjust ±0.05 m with a force limit of ±20 N as per [11].

When kinematic redundancy is added to a leg, this allows the orientation of the distal link AiBi to be
changed. The effect is shown in Figure 3 using the 1st leg as an example. The figure shows the leg when
the prismatic joint is at its maximum and minimum lengths. Link A1B1 can have any orientation between
the extreme positions shown. The orientation of A1B1 affects the orientation and the magnitude of the force
applied at B1 and therefore changes the force polygon. The vertices of the new polygon are still obtained
when two actuator torques are at their maximum values.

3. MANIPULATOR KINEMATICS

3.1. Inverse Displacement Solution
From Figure 2, the vector loop produces:

p = OOi +OiAi +AiBi−PBi (1)

where p is the vector expressing point P, the other vectors are from the point indicated by the first letter
to the point indicated by the second letter and i = 1,2,3. It should be noted that PBi = RPB′i and R is the

rotation matrix
[

cosφ −sinφ

sinφ cosφ

]
, specifying the orientation of the moving frame and PB′i is the vector

from P to Bi expressed in the moving frame xy. The vector OiAi can be expressed as:

OiAi =

[
Li cosθi

Li sinθi

]
(2)

To eliminate AiBi, Equation (1) can be rearranged as:

AiBi = p−OOi−OiAi +PBi (3)
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Fig. 3. Effect of redundancy on the 1st leg

Squaring both sides yields:

AiBT
i AiBi = l2 = (p−OOi−OiAi +PBi)

T (p−OOi−OiAi +PBi) (4)

Equation (4) can be written as:
l2 = (wi−OiAi)

T (wi−OiAi) (5)

where:
wi = p−OOi +PBi (6)

Setting OiAT
i OiAi = L2

i and rearranging Equation (5) yields:

2wT
i OiAi = wT

i wi +L2
i − l2 (7)

Note that the right hand side of Equation (7) is completely known. Equation (7) can be rewritten as:

Acosθi +Bsinθi +C = 0 (8)

where
A = 2wT

i e1Li

B = 2wT
i e2Li

C = l2−L2
i −wT

i wi

(9)

and

e1 =

[
1
0

]
e2 =

[
0
1

] (10)
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Fig. 4. Forces acting on the end-effector

Using the tangent half-angle substitution Ti = tan θi
2 allows Equation (8) to be rewritten as:

(C−A)T 2
i +2BTi +(C+A) = 0 (11)

which has two roots for each θi.
With the angles θi determined, the unit vector ni1 along the proximal link OiAi is obtained as:

ni1 =

[
cosθi

sinθi

]
(12)

The unit vector ni2 along link AiBi can also be determined as:

ni2 =
OBi−OAi

l
=

(p+PBi)−OAi

l
(13)

3.2. Force Analysis
The required forces can be determined from the equilibrium equations. Let fi designate the force directed

along the distal link of leg i on the end-effector, i.e., the force along link AiBi of magnitude fi. The forces
acting on the end-effector are shown in Figure 4. The equilibrium equations on the end-effector lead to:

[
n12 n22 n32

zT (PB1×n12) zT (PB2×n22) zT (PB3×n32)

] f1
f2
f3

=

[
fe

mez

]
(14)

where fe represents the force applied by the end-effector and mez represents the moment about point P
applied by the end-effector.

Equation (14) can be rewritten as:
JT

2 τττ2 = F (15)

where τττ2 is the vector of forces in the distal links, F represents the end-effector output force and moment,
or wrench, and JT

2 is the transpose of the manipulator Jacobian matrix that relates these two quantities. If
the output wrench is specified, the axial forces in the distal links can be determined with:

τττ2 = J−T
2 F (16)

The actuator torques required at the base can be obtained using the equilibrium conditions of the base
proximal links OiAi. Figure 5 shows the forces acting on link OiAi where fi is the reaction force at Ai on link
OiAi.
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Fig. 5. Forces acting on proximal link OiAi

If ni1 designates a unit vector from Oi to Ai, the torque required can be found from the magnitude of the
moment τττ i, i.e., τi, computed by summing the moments about Oi:

τi =−LizT (ni1× fi) =−LizT (ni1× fi(−ni2)) = Li fizT (ni1×ni2) (17)

where Li is the distance between Oi and Ai, and fi is in the opposite direction of ni2.
Since both vectors in Equation (17) are about the z axis, the force fi in the distal link corresponding to a

specified torque can be obtained with

fi =
τi

LizT (ni1×ni2)
(18)

The magnitude of the force in the proximal link, designated as fact i , can be obtained by the projection of
fi in the direction of OiAi.

facti = fi
T ni1 (19)

4. PROCEDURE FOR GENERATING FORCE POLYGONS

It was shown in [6] that the coordinates of the points of the force polytope could be obtained without
computing them at discretized angles that varied from 0 to 2π . As stated previously, for a given combination
of lengths, the vertices of the force polygon occur when two actuator torques are at their maximum values.
The polytope can be obtained by checking the 12 possible combinations of maximum torques. There are
three combinations of torques at their maximum values (two out of three torques are at their maximum) and
four combinations of torques at their maximum values (±τimax , ±τ jmax). For a specified applied moment mez

at a given pose, and the case where two actuators are at their maximum values, there are three unknowns in
Equation (14), the values of the components fx and fy of the force applied at the end-effector and the force
in the leg in which the actuator is not maximized, denoted fk. The latter will be henceforth designated as
the force in transition.

Let i, j, and k denote the three legs of the manipulator and consider the case where the torques are
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maximum in legs i and j. Equation (14) can be rewritten in the following form:

[
ni2 n j2 nk2

zT (PBi×ni2) zT (PB j×n j2) zT (PBk×nk2)

] fimax

f jmax

fk

=

[
fe

mez

]
(20)

where fimax and f jmax correspond to the forces in the distal links produced by the maximum torques in legs
i and j, respectively. This equation can be rearranged as:

 −1 0 nk2x

0 −1 nk2y

0 0 zT (PBk×nk2)

 fx

fy

fk

=

[
−ni2 fimax−n j2 f jmax

−zT (PBi×ni2) fimax− zT (PB j×n j2) f jmax +mez

]
(21)

Equation (21) is of the form Ax = b where A and b are known and x can be solved for. The values of fx

and fy are the coordinates of a point of the polygon. Any combination of maximum torques that produces
a force in leg k that exceeds the maximum force that can be exerted by the actuator of leg k, fkmax, is not
possible and is removed from the list of potential vertex points. It should be noted that the computation of a
possible vertex point involves only the resolution of three equations, each with one unknown. The last row
of Equation (21) has only one unknown, fk, and can be solved first, leaving only one unknown for each of
the equations in the first two rows.

Prior to explaining the procedure to obtain the force polygon when all the proximal link lengths vary,
let us examine what happens to the polygon when two lengths are kept fixed and the other is varied from
its minimum to its maximum length. Figure 6 shows the case where four polygons are generated for the
four combinations of proximal link lengths indicated. The case presented is for an applied moment mez = 0
and is therefore a pure force analysis. In all cases the length of the proximal link in the first and third legs
is kept constant at 0.15 m. The length of the proximal link of the second leg is varied using four lengths
that are between 0.15 and 0.25 m. In the upper right (and lower left) of the figure there are four points
that were obtained for each polygon generated. A dotted line was added between the points obtained at the
extreme positions of leg 2 (0.15 and 0.25 m). This line passes through all points generated for polygons
with proximal link lengths for the second leg between 0.15 and 0.25 m. This important result allows one to
conclude that a straight line can be drawn between the points obtained at the extreme positions and that line
will contain any points for an intermediate length. The force polygon is thus composed of the outermost
lines in the figure and the dotted lines since there is an intermediate length that corresponds to a point on the
dotted line.

When redundancy is included in all legs, the force polygon can be obtained by computing the forces for
all combinations that include only the extreme positions of the proximal link lengths. For three legs, there
are, therefore, only eight possible combinations of proximal link lengths to verify. Once the forces for all
combinations are computed, the outermost points are joined by straight lines to produce the force polygon
for the redundant manipulator. This can be done with a convex hull operation.

The procedure to obtain the force polygon is:

1. Specify pose p and compute the coordinates of point B using p+RPB′i.

2. Compute vectors OOi.

3. Compute wi using Equation (6) (note that p+RPBi has been computed in Step 1).

4. Compute A, B, and C using Equation (9) and solve Equation (11) to determine the two solutions for
θi. Choose the solution that corresponds to the selected leg layouts.
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Fig. 6. Effect of redundancy on the force polygon

5. Compute unit vectors ni1 and ni2 using Equations (12) and (13). OiAi is obtained from Equation (2).

6. Compute the coordinates of the vertices of the polygon using the 12 possible combinations of two
actuator torques that are maximized ±τimax , ±τ jmax using Equation (21). Note that fimax and f jmax are
obtained from Equation (18) using the maximum torque value.

7. Remove any combination that produces a force in transition larger than the maximum possible force
produced by its actuator.

8. Verify if the force in the proximal link is less than the actuator capacity using Equation (19). If the
force is larger than the actuator capacity, compute the force fi using Equation (19) that corresponds to
the maximum actuator force. Note that the direction of fi is known from ni2, so the right hand side of
Equation (19) is known except for the magnitude of the force fi.

9. Perform a convex hull operation to obtain the points of the force polygon. The function convhull in
MATLAB can be used to generate the convex hull of the points.

5. WRENCH CAPABILITIES OF THE 3-RPRR MANIPULATOR

Using the procedure outlined in the previous section, the complete force polygon for the 3-RPRR kinema-
tically-redundant planar parallel manipulator can be generated. The results presented here are for a pure
force analysis (mez = 0) at x = 0, y = 0, and φ = 0 to be able to compare with the results of [11]. Figure
7 shows the force polygons for the eight possible cases of extreme proximal link lengths and Figure 8
shows the complete force polygon for the 3-RPRR. Comparing Figure 8 to the results in [11] shows that the
generated force polygon is correct. However, unlike the results in [11] that are an approximation of the force
polygon due to the use of optimization, the results shown in Figure 8 are an exact solution. The solution
presented here is very efficient compared to the method used in [11]. In the latter, a polar discretization
from 0 to 360 degrees was used to produce the polygon. For each discretized direction, a coordinate for
the force polygon is obtained using a Differential Evolution optimization, a procedure computationally
expensive. Also, the resulting polygon does not consist of nice straight lines since each point computed
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Fig. 7. Force polygons for eight possible proximal link length combinations

is an approximate solution. The procedure presented here requires only to solve Equation (21) for the
eight proximal link length combinations that correspond to the links’ extreme positions while excluding any
torque combinations that produce transition forces that exceed the maximum torque capacity of the torque
in transition. The plot of the torques required to produce the force polygon is presented in Figure 9 where
angle α is the angle shown in Figure 1. The plot is the same as that obtained in [11]. The maximum forces
required in the prismatic joints is approximately 18 N, less than the maximum capacity of 20 N. The plot
of the forces in the prismatic joints has the same form as Figure 9 since the torques generate a force in the
distal links and this force projected in the direction of the proximal link represents the force required in the
prismatic joints. They are thus directly proportional.

An important observation can be deduced about the force polygons for kinematically-redundant planar
parallel manipulators. For a non-redundant manipulator a line on the force polygon indicates that one
actuator is at its maximum capacity while two are at their maximum capacity at a vertex of the polygon
[12]. For a kinematically-redundant manipulator, this is not necessarily the case. Two actuators are at their
maximum capacity on the lines that are generated when one of the proximal link lengths is transitioning
between its two extreme positions and the other two proximal link lengths are at one of their extreme
positions, as illustrated in Figure 6. This is also illustrated in Figure 9, where, for example, two torques are
at their maximum values when α is between approximately 50 and 75 degrees.

6. CONCLUSIONS

This paper presented an explicit solution of the force capabilities of kinematically-redundant planar par-
allel manipulators using a wrench polytope approach. The latter had been previously used to determine the
explicit solution of the force capabilities for non-redundant planar parallel manipulators [6] and for planar
parallel manipulators with actuation redundancy [10].

Contrary to the force polygons of non-redundant manipulators in which a line on the polygon corresponds
to one actuator being at its maximum capacity, some lines on the force polygon of kinematically-redundant
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Fig. 8. Force polygon for the 3-RPRR

manipulators correspond to the case where two actuators are at their maximum capacity.
As mentioned previously, only one other work found in the literature [11] had proposed a solution to the

force capabilities of kinematically-redundant planar parallel manipulators, but they used optimization. This
paper presented a methodology that produces an explicit solution to the problem. The methodology was
tested on the same pure-force problem to verify that the results matched those in [11]. Future research will
focus on testing different wrench conditions and poses to ensure that the proposed method is general and
applicable in all cases.

An explicit solution to the force capability problem is very useful in a design context. The effect of modi-
fying design parameters such as the proximal link lengths, the range of the prismatic joints, or the maximum
torque capacities can be rapidly observed and the performance of the manipulator can be improved to obtain
desired results.
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