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ABSTRACT
The four arc length angles of the links in a spherical 4R mechanism completely determine the mobility

of the driver and follower (input and output) links. The design parameter space can therefore be represented
by the four arc length angle tangent half-angle parameters αi, i ∈ {1,2,3,4}. Treating these parameters
as homogeneous coordinates one can, without affecting the mobility characteristics, project the four-space
into the hyperplane of one of the parameters which can be thought of as representing an orthogonal three-
space in the remaining parameters. When the three αi are treated as mutually orthogonal basis directions
then the location of a point in the space determines the mobility characteristics of the chain. The algebraic
input-output equation of the spherical 4R, an algebraic polynomial in terms of the four αi and the input
and output angle tangent half-angle parameters v1 and v4, is a planar quartic curve in v1 and v4. Four of
the coefficients factor into the product of two cubic surfaces in the four αi. Each of the eight cubic factors
contain linear terms where the four linear αi possess eight distinct variations in sign. The occurrence or
absence of angular displacement limits for the input and output links is completely determined by the signs
of products of four of the linear portions of the cubic coefficients, and therefore by the location of a point in
the design parameter space spanned by the αi.
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CLASSIFICATION DE LA MOBILITÉ DANS L’ESPACE DES PARAMÈTRES DE
CONCEPTION DES MÉCANISMES SPHÉRIQUES 4R

RÉSUMÉ
Les quatre angles de longueur d’arc des liaisons dans un mécanisme sphérique 4R déterminent complète-

ment la mobilité des liaisons pilote et suiveur (entrée et sortie). Son espace de paramètres de conception est
donc constitué des quatre paramètres de demi-angle tangent d’angle de longueur d’arc αi, i ∈ {1,2,3,4}.
En traitant ces paramètres comme des coordonnées homogènes, on peut, sans affecter les caractéristiques
de mobilité, projeter les quatre espaces dans l’hyperplan de l’un des paramètres que l’on peut considérer
comme représentant un trois espaces orthogonaux dans les paramètres restants. Lorsque les trois αi sont
traités comme des directions de base, l’emplacement d’un point dans l’espace détermine les caractéristiques
de mobilité de la chaîne. L’équation algébrique d’entrée-sortie du 4R sphérique, un polynôme algébrique en
termes des quatre αi et des paramètres de demi-angle tangent d’angle d’entrée et de sortie v1 et v4, est une
courbe quartique planaire dans v1 et v4. Quatre des coefficients sont chacun pris en compte dans le produit
de deux surfaces cubiques dans les quatre αi. Chacun des huit facteurs cubiques contient des termes linéaires
où les quatre αi linéaires possèdent huit variations distinctes de signe. L’occurrence ou l’absence de limites
de déplacement angulaire pour les liaisons d’entrée et de sortie est complètement déterminée par les signes
des produits de quatre des parties linéaires des coefficients cubiques, et donc par l’emplacement d’un point
dans l’espace des paramètres de conception enjambé par le αi.

Mots-clés : Sphérique 4R; espace des paramètres de conception ; limites de mobilité.
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Fig. 1. Spherical 4R DH reference frames and parameters.

1. INTRODUCTION

Spherical 4R linkages have been the focus of research for millennia [1]. Arguably the most successful
mechanical system built on spherical 4R closed complex kinematic chains is the Agile Eye [2], introduced in
1994 and used as a camera pointing system. Four years later the mobility conditions on the input and output
links in spherical function generators were classified using the trigonometric input-output (IO) equation [3],
but 24 years earlier type and mobility considerations were examined [4]. While there is a substantial volume
of literature regarding classification, see [5–7] for example, this type of mechanical system still excites the
imagination, see [8] for a recent example. Hence, we believe there is sufficient justification to revisit the
mobility conditions on the input and output links of spherical 4R mechanisms imposed by the fixed distances
between the R-pair centres in light of a novel algebraic IO equation [9].

Consider the arbitrary spherical 4R linkage illustrated in Fig. 1. The IO equation expresses the functional
relationship between the input and output angles, θ4 = f (θ1) in terms of the constant angular distances
between the four R-pair centres, τi. The derivation of the algebraic form of the spherical IO equation makes
use of the original Denavit-Hartenberg (DH) parametrisation of the kinematic geometry [10]. It also requires
that all measures of angle be converted to algebraic parameters using the so called Weierstrass tangent half-
angle substitutions:

vi = tan
θi

2
, αi = tan

τi

2
;

cosθi =
1− v2

i

1+ v2
i
, cosτi =

1−α2
i

1+α2
i

;

sinθi =
2vi

1+ v2
i
, sinτi =

2αi

1+α2
i
.

In the often bizarre historical record of mathematics facts are sometimes distorted. These half-angle param-
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eters are named after mathematician Karl Weierstrass (1815 - 1897), without any claim of the substitution in
Weierstrass’ own writings. Indeed, these substitutions are first used in a recognisable way [11] by Leonhard
Euler in [12], but come from the much older rational parameterisation of the unit circle which uses the t-line
construction and the formulae x = (1− t2)/(1+ t2), y = 2t/(1+ t2). This substitution goes back in some
form to Euclid, or even earlier, who used it to generate Pythagorean triples [13].

Making these substitutions the algebraic form of the IO equation is derived as [9]

Av2
1v2

4 +Bv2
1 +Cv2

4 +8α1α3
(
α2

4 +1
)(

α2
2 +1

)
v1v4 +D = 0, (1)

where

A = A1A2 = (α1α2α3−α1α2α4 +α1α3α4−α2α3α4 +α1−α2 +α3−α4)

(α1α2α3−α1α2α4−α1α3α4−α2α3α4−α1−α2−α3 +α4) ,

B = B1B2 = (α1α2α3 +α1α2α4−α1α3α4−α2α3α4 +α1 +α2−α3−α4)

(α1α2α3 +α1α2α4 +α1α3α4−α2α3α4−α1 +α2 +α3 +α4) ,

C = C1C2 = (α1α2α3−α1α2α4−α1α3α4 +α2α3α4−α1 +α2 +α3−α4)

(α1α2α3−α1α2α4 +α1α3α4 +α2α3α4 +α1 +α2−α3 +α4) ,

D = D1D2 = (α1α2α3 +α1α2α4 +α1α3α4 +α2α3α4−α1−α2−α3−α4)

(α1α2α3 +α1α2α4−α1α3α4 +α2α3α4 +α1−α2 +α3 +α4) .

The eight cubic factors in the four coefficients A, B, C, and D are symmetric singular cubics which each pos-
sess three distinct finite lines and three common lines at infinity [14]. Note that a cubic surface can contain
as many as 27 lines [15]; those that contain less than 27 are called singular, while those that contain exactly
27 are non-singular. Different pairs of the eight surfaces have one finite line in common, meaning there are
12 distinct finite lines among the eight surfaces. The finite lines contain the twelve edges of a regular double
tetrahedron. The three lines on each surface intersect each other in an equilateral triangle and the eight
equilateral triangles form the edges of a stellated octahedron, which has order 48 octahedral symmetry [16]:
a regular double tetrahedron that intersects itself in a regular octahedron. Fascinatingly, the faces of the
regular double tetrahedron are also found in the design parameter space of planar 4R linkages [14]! The
edges of this double tetrahedron can be regarded as the intersection of the linear factors of the coefficients
of the planar 4R and the singular cubic surfaces formed by the coefficients of the spherical 4R IO equations
in the design parameter spaces. Fig.s 2a and 2b illustrate the eight cubic surfaces and the three finite lines
on each.

Without loss in generality, the surfaces are projected into the hyperplane α4 = 1 for visualisation, see
Fig. 2. If the αi are interpreted as directed distances, each distinct point in this space represents a different
spherical 4R linkage, while it’s location implies the mobility of the input and output links, hence the space is
called the design parameter space of spherical 4R linkages. The idea of representing mobility constraints in
the space implied by the Freudenstein parameters of planar and spherical 4R linkages was first put forward
in [17, 18] in the late 1980’s. However the symmetry of the stellated octahedron, which has order 48 octa-
hedral symmetry [16], represented in the design parameter space of planar 4R four-bars which, in a sense,
intersects the eight cubic surfaces of the spherical 4R is not present in this representation as the Freudenstein
parameter space. Moreover the intersection of the representations of planar and spherical 4R IO equations
in the design parameter spaces is not directly observable in that work. We believe that there is something
of remarkable beauty in this elegant result: the IO equations in the design parameter spaces of these two
classes of mechanism intersect along the edges of the only uniform polyhedral compound in the universe
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of polyhedra! Regardless, both the Freudenstein approach as with this algebraic approach lead to synthesis
equations that are linear in the parameters, which is ideal from a design standpoint. However, the Freuden-
stein approach is vector-loop based often leading to a single solution, whereas the algebraic approach yields
all possible solutions of the synthesis equations.

α1
α2

α3

(a) In the range −25≤ αi ≤ 25.

α1
α2

α3

(b) In the range −1≤ αi ≤ 1.

Fig. 2. Eight cubic surfaces in the spherical 4R design parameter space.

2. MOBILITY CONDITIONS

The magnitudes of the linear components of four of the eight coefficient factors in Eq. (1) determine the
mobility of the input and output links leading to results remarkably similar to [19]. Hence, the location of
a point in the projection of the design parameter space illustrated in Fig. 2 defines the mobility of a linkage
assembled with the links possessing the distances between the R-pairs implied by the values of α1, α2,
and α3 with α4 = 1. The effect of normalising α1, α2, and α3 with α4 is to place the associated function-
generator on the surface of a unit sphere, and values of α4 that are not unity merely scale the angular
distances between the R-pairs changing the radius of the sphere but preserving the function correlating the
input and output angles. The linear components of interest are contained in the factors A1, B1, C1, and D1 in
Eq. (1), and are correspondingly labelled as

Al1 = α1−α2 +α3−α4, Bl1 = α1 +α2−α3−α4,
Cl1 = −α1 +α2 +α3−α4, Dl1 = −α1−α2−α3−α4.

}
(2)

The following classification requires that α4 correspond to the relatively non-moving link.

2.0.1. Existence Condition for θ1min

Examining the spherical 4R illustrated in Fig. 1 the input link can correspond to either τ1 or τ3. We
arbitrarily assign the input link to be τ1 and θ1 its input angle. If the relative lengths of the links permit, the
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links corresponding to τ2 and τ3 can align on the same great circle. In this configuration θ1 will be either
at its minimum or maximum value. If the arc length of the great circle segment is determined by the angle
τ2− τ3 then θ1 will be at its minimum value, denoted θ1min . In order to be able to attain this configuration
then it must be that cosθ1min < 1. If, on the other hand, cosθ1min ≥ 1 then the alignment of τ2 and τ3 on the
same great circle is not mechanically possible and τ1 will be able to traverse the positive x0-axis passing
through θ1 = 0. We will consider the condition cosθ1min = 1 to be a transition case, meaning that the link
lengths in the corresponding mechanism have at least one folding configuration where the input link and the
coupler, as well as the output link, lie along the x0-axis. The condition for this ability to traverse the x0-axis
can be modelled using the law of cosines for spherical triangles [20]

cosθ1min =
cos(τ2− τ3)− cosτ1 cosτ4

sinτ1 sinτ4
≥ 1. (3)

Rearranging Eq (3) and using the addition/subtraction identity

cosφ1 cosφ2 + sinφ1 sinφ2 = cos(φ1−φ2)

yields the equivalent condition of

cos(τ2− τ3) ≥ cos(τ1− τ4). (4)

Because the magnitude of the cosine function decreases as the absolute value of its argument increases in
the range 0≤ ∆τ ≤ π , Eq. (4) can be re-expressed equivalently as

(τ2− τ3)
2 ≤ (τ1− τ4)

2, ⇒ (τ2− τ3)
2− (τ1− τ4)

2 ≤ 0. (5)

This difference of squares is factored according to a2−b2 = (a+b)(a−b), giving

(τ1 + τ2− τ3− τ4)(−τ1 + τ2− τ3 + τ4) ≤ 0. (6)

Converting these factors of sums and differences of angles to their algebraic equivalents yields sums and
differences of the αi which correspond to −Al1 and Bl1, two linear components of the factors listed in
Eq. (2), giving

(α1 +α2−α3−α4)︸ ︷︷ ︸
Bl1

(−α1 +α2−α3 +α4)︸ ︷︷ ︸
−Al1

≤ 0, (7)

or equivalently

Al1Bl1 ≥ 0. (8)

Hence, the condition for θ1min to exist is Al1Bl1 < 0. If, on the other hand, Al1Bl1 ≥ 0 then the link defined
by α1 can cross the positive x0-axis, passing through 0.

2.0.2. Existence Condition for θ1max

If the relative lengths of the links allow τ2 and τ3 to align on the same great circle with arc length deter-
mined by τ2 + τ3 then θ1 will be at its maximum value, denoted θ1max . The condition enabling link α1 to
pass through π on the x0-axis, meaning that θ1max does not exist, is again modelled with the law of cosines
for spherical triangles as:

cosθ1max =
cos(τ2 + τ3)− cosτ1 cosτ4

sinτ1 sinτ4
≤ −1. (9)
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Rearranging Eq. (9) and using the addition/subtraction identity gives the condition

cos(τ2 + τ3) ≤ cos(τ1 + τ4)

Now, following the same procedure as for θ1min leads to the inequality condition for the non-existence of
θ1max as the product of the sums and differences of the linear elements listed in Eq. (2)

(α1 +α2 +α3 +α4)︸ ︷︷ ︸
−Dl1

(−α1 +α2 +α3−α4)︸ ︷︷ ︸
Cl1

≥ 0, (10)

or

Cl1Dl1 ≤ 0. (11)

In the interest of space, we will only report the mobility classification in the cases where −Dl1 > 0 since
the classification is determined in the same way for cases where −Dl1 ≤ 0. Therefore, in the case where
numerical value for the linear factor Dl1 is a non-zero negative number, to satisfy the condition in Eq. (11)
it must be that

Cl1 ≥ 0. (12)

Therefore, the condition for θ1max to exist is that Cl1 < 0. Alternately, if Cl1 ≥ 0 then α1 can cross the
negative x0-axis, passing through π , in turn meaning that θ1max does not exist.

2.0.3. Existence Condition for θ4min

The procedure for determining the conditions on the link lengths for the existence of a minimum output
angle, θ4min , is similar to that of determining the conditions for θ1, but uses a different spherical triangle. In
order for θ4min to exist, then links τ1 and τ2 must align on the same great circle with arc length determined by
τ2−τ1. If this configuration cannot be reached by the mechanism then θ4min does not exist and cosθ4min ≥ 1,
meaning that τ4, or α4 depending on how it is represented, can pass through 0 on the x4-axis. Hence, the
condition required for θ4min to not exist is given by

cosθ4min =
cos(τ2− τ1)− cosτ3 cosτ4

sinτ3 sinτ4
≥ 1. (13)

The equivalent condition, in the range 0 ≤ ∆τ ≤ π , is given by factoring the difference of squares and
converting the τi to αi is

(−α1 +α2 +α3−α4)︸ ︷︷ ︸
Cl1

(−α1 +α2−α3 +α4)︸ ︷︷ ︸
−Al1

≤ 0. (14)

This means that the condition for θ4min to not exist thus enabling α3 to pass though 0 is

Al1Cl1 ≥ 0. (15)

We can conclude that the condition for θ4min to exist is that the product of linear factors Al1Cl1 < 0. Alter-
nately, if Al1Cl1 ≥ 0 then α4 can cross the positive x4-axis, passing through 0, in turn meaning that θ4min does
not exist.
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2.0.4. Existence Condition for θ4max

The condition for the existence of θ4max is that links τ1 and τ2 must align on the same great circle with
arc length determined by τ1 + τ2. For α4 to have the ability to pass through π on the x4-axis is given by
cosθ4max ≤−1, meaning that

cosθ4max =
cos(τ1 + τ2)− cosτ3 cosτ4

sinτ3 sinτ4
≤ −1. (16)

Following the same procedure detailed as for θ1max leads to the condition for the non-existence of θ4max as

(α1 +α2 +α3 +α4)︸ ︷︷ ︸
−Dl1

(α1 +α2−α3−α4)︸ ︷︷ ︸
Bl1

≥ 0. (17)

This means that the condition for θ4max to not exist is

Bl1Dl1 ≤ 0. (18)

As with the conditions on the existence of θ1max we may consider only the cases where−Dl1 > 0 and consider
only the linear factor Bl1 in the non-existence criterion in Eq. (18) and restate the condition for θ4max to not
exist thereby enabling α3 to pass though π is

Bl1 ≥ 0. (19)

The existence criteria for the minimum and maximum input and output joint angles in every spherical 4R
linkage where Dl1 < 0 are summarised in Table 1.

Angle Exists if Does not exist if

θ1min Al1Bl1 < 0 Al1Bl1 ≥ 0

θ1max Cl1 < 0 Cl1 ≥ 0

θ4min Al1Cl1 < 0 Al1Cl1 ≥ 0

θ4max Bl1 < 0 Bl1 ≥ 0

Table 1. Existence criteria for minimum and maximum input and output joint angles in spherical 4Rs where Dl1 < 0.

2.1. Mobility Classification for Spherical 4R Linkages
It is to be seen that the magnitude of four of the linear components, Al1, Bl1, Cl1, and Dl1 of the eight

cubic factors of the coefficients of Eq. (1) completely determines the mobility of the input and output links.
If we classify the mobility of the linkages limiting our possibilities to allowing Al1, Bl1, Cl1 to have any
one of the three values (−, 0, +) while −Dl1 > 0, then there are 33 = 27 permutations. If −Dl1 is also
allowed to vary in value in the same way then there will be 34 = 81, or 54 additional linkage mobility
classes, all classified in the same way. The eight distinct mobility types in the 27 cases where −Dl1 > 0
are listed in Table 2. Depending on the twist angle parameters and sphere radius, each of the first three of
the four linear components can be positive, negative, or identically zero, while Dl1 is always less than zero.
In the classification scheme first presented in [3] and later refined in [21] trigonometric relations are only
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# Al1 Bl1 Cl1 Input α1 Output α4 # Al1 Bl1 Cl1 Input α1 Output α4

1 + + + crank crank 15 0 0 - 0-rocker crank

2 + + 0 crank crank 16 0 - + crank 0-rocker

3 + + - 0-rocker π-rocker 17 0 - 0 crank 0-rocker

4 + 0 + crank crank 18 0 - - 0-rocker 0-rocker

5 + 0 0 crank crank 19 - + + π-rocker π-rocker

6 + 0 - 0-rocker π-rocker 20 - + 0 π-rocker crank

7 + - + π-rocker 0-rocker 21 - + - rocker crank

8 + - 0 π-rocker 0-rocker 22 - 0 + crank π-rocker

9 + - - rocker rocker 23 - 0 0 crank crank

10 0 + + crank crank 24 - 0 - 0-rocker crank

11 0 + 0 crank crank 25 - - + crank rocker

12 0 + - 0-rocker crank 26 - - 0 crank 0-rocker

13 0 0 + crank crank 27 - - - 0-rocker 0-rocker

14 0 0 0 crank crank

Table 2. Classification of all possible planar spherical 4R linkages where Dl1 < 0. Shaded cells satisfy the Grashof
condition.

considered. Because the sum of any two angles in a spherical triangle can exceed π , but not 2π , while the
sum of the three interior angles is greater than π , but less than 3π , it may happen that the argument of the
cosine function is not in the range between 0 and π . To address this the trigonometric form of the Dl1 term
is modified to

D′l1 = 2π− τ1− τ2− τ3− τ4.

Depending on the magnitudes of the angles D′l1 may be less than, greater than, or identically equal to
0. If D′l1 < 0 then the linkage wraps around the sphere [21]. Regardless, for each of the eight possible
mechanism types possessing mobility determined by the signs of the other three linear factors is precisely
the same as those for the case where D′l1 > 0. Moreover, when converted to their algebraic parameters we
see that D′l1 = Dl1 since tan2π/2 = 0. Therefore we only consider the eight cases where Dl1 < 0 which
aligns with results already established in the literature [3, 21].

Moreover the Grashof condition is satisfied when the product Al1Bl1Cl1Dl1 < 0. The four possible Grashof
linkages are the shaded cells in Table 2. If the link lengths permit any one, or any combination of Al1, Bl1, or
Cl1 to be identically zero, then the linkage can fold, these additional 19 folding linkages are also tabulated.
The number of linear factors equalling zero corresponds to the number of ways the linkage can fold.

3. CONCLUSIONS

In this paper, using the algebraic IO equation for spherical 4R linkages from [9], we have shown that the
linear elements of four of the eight cubic factors of link lengths play a role in characterising the mobility
characteristics of the input and output links. Any point in the design parameter space of the link length
parameters α1, α2, and α3 projected into the hyperplane α4 = 1 establishes the mobility characteristics
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listed in Table 2. While the results themselves are not new, the method by which they are obtained is.
Moreover, since the same approach can be applied to planar 4R linkages as well, we are steadily approaching
the development of a completely general function generator algebraic IO equation derivation algorithm for
any planar, spherical, or spatial four-bar linkage kinematic architecture which reveals the associated design
parameter spaces.
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