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ABSTRACT
The accurate evaluation of the deformation undergone by a soft object when it is seized by a gripper has

many important applications but remains a difficult challenge due to the computational burden associated
with this task. For instance, during surgery excessive pressure has been associated with local trauma (micro-
lesions) leading to indesirable bleeding. For produce pick and place, the same type of excessive pressure
can cause unsightly bruises and unnecessary waste as these damaged produces generally cannot be sold to
the customer. In this paper, an alternative to the usual Finite-Element Analysis (FEA) method is used to
accelerate the computation of an effective model, simpler but keeping excellent accuracy. While introduced
in a previous work by the authors, this model is here refined by analyzing the impact on the simulation
accuracy of the number of elements used to approximate the soft object. The latter being critical for compu-
tation efficiency. Simulations are discussed here with the objective of confirming what is the minimal viable
number of elements one can use in the case of an angular gripper grasping deformable circles of various
radii. After the introduction of the numerical model, comparisons with FEA of the results obtained from the
model depending on the number of elements are shown. Finally, experiments with a surgical forceps and
deformable cylinders confirm the effectiveness of the model in producing accurate results.

Keywords: Mass-spring model; grasping interaction; deformation modeling.

MODÈLE POINT-RESSORT POUR LA SAISIE D’UN OBJET DÉFORMABLE PAR UNE PINCE
ANGULAIRE

RÉSUMÉ
L’évaluation précise de la déformation subie par un objet mou lorsqu’il est saisi par un préhenseur a de

nombreuses applications importantes mais reste un défi difficile à relever en raison de la charge de calcul
associée à cette tâche. Par exemple, lors d’une opération chirurgicale, une pression locale excessive peut être
associée à un traumatisme local (micro-lésions) entraînant des saignements indésirables. Pour la manipula-
tion de produits agricoles, ce même type de pression excessive peut causer des traces disgracieuses menant à
des pertes inutiles, car ces produits endommagés ne peuvent habituellement pas être vendus au client. Dans
ce document, une alternative à la méthode habituelle d’analyse par éléments finis est utilisée pour accélérer
le calcul d’un modèle efficace tout en conservant une excellente précision. Bien qu’introduit dans un travail
précédent par les auteurs, ce modèle est ici affiné en analysant l’impact sur la précision de la simulation du
nombre d’éléments utilisés pour approcher la forme de l’objet mou. Ce nombre étant essentiel pour l’effi-
cacité du calcul. Des simulations sont discutées dans le but de confirmer quel est le nombre minimal viable
d’éléments que l’on peut utiliser dans le cas d’une pince angulaire saisissant des cercles déformables avec
différents rayons. Après l’introduction du modèle numérique, des comparaisons avec l’analyse par éléments
finis des résultats obtenus à partir du modèle en fonction du nombre d’éléments sont présentées. Enfin, des
expériences avec une pince chirurgicale et des cylindres déformables confirment l’efficacité du modèle à
produire des résultats précis.

Mots-clés : Modèle masse-ressort ; saisie ; modélisation de déformation.
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1. INTRODUCTION

Design optimization of grippers intended for the grasp or interaction with deformable objects usually
involves the comparison and therefore, simulations, of a significant number of architectures. These simula-
tions are typically relying on a Finite Element Method (FEM) which is the most widely software approach
used for structural analysis. This method is accurate, but also requires significant computation time [1, 2]
which makes certain optimization techniques difficult to use such as genetic algorithms, especially when
large deformations are required. Another method referred to as mass-spring model (MSM) is commonly
used for real-time application because of its simplicity and speed [3]. It consists of using mass points to
discretize the geometries of the deformable objects to be simulated. These mass points are connected by
springs approximating the elasticity of the material. In the available literature, values for the spring stiff-
nesses in a MSM are estimated with different techniques usually taking into account the geometry of the dis-
cretization (area of contiguous polygons, lengths, etc.) and material properties (Young’s modulus, Poisson’s
ratio) [4–6]. Although stiffness evaluation processes are usually for two-dimensions cases, an adaptation
for three-dimensional scenarios including masses localized at the discretized points has also been recently
proposed [7].

The current most common application of MSM is visual effect for animation, where the goal is to quickly
visualize realistic motions but not necessary accurate ones [8]. This trade-off is not acceptable for all appli-
cations especially when it can have important practical consequences, such as with surgery simulators where
inaccurate results can have negative impact on training [9]. However, MSM can be made significantly more
accurate, even for large deformation, when enough points are considered. In [10] a point-spring model
(PSM), a MSM with no mass, was used to evaluate the deformation of a soft object grasped by compliant
grippers with multiple architectures. The possibility to quickly go from one design to another and obtaining
quick results from the simulation was the rationale of the choice of method and the results were shown to
comparable to FEA at a much lighter computational burden. In this method, the points of the PSM only
discretize the object contour shape and its fixed center, keeping complexity at a minimum. When forces
are applied on the contour points, the internal springs of the model deform to mimic the flexibility of the
soft material constituting the object. Thereby, deformations undergone by the object can be evaluated to
optimize gripper design architectures. An example of application of this type of simulation is when one
needs to design a medical tool minimizing the deformation, or at least mitigate damage, of fragile tissues or
organs while keeping a maximum number of contact points for a secure grasp [11, 12].

One challenge of the aforementioned optimization is to determine the parameters of a PSM discretization
for the soft object which will be both accurate and quick. As FEM, a simulation with a coarse meshing
may not result in a reasonably accurate value while better results with a finer mesh are expected but may
be very long to compute. The work presented in [13] focused on the validation of the numerical equations
modeling grippers with deformable objects in order to fit with experimental measurements but without
concerns about the required computational time. For instance, the number of divisions of the objects was
not a parameter analyzed in the latter reference despite its critical importance for computation time and
accuracy). In this article, different numbers of elastic elements are studied to evaluate a PSM simulating
the grasp of a deformable circle by an angular (rotational) gripper. First, the numerical model of the object,
the jaws of the gripper, and their interaction will be detailed. Then, a comparison of the accuracy of a
discretization depending on its number of elements will be presented to determine the best distribution of
contour points of the PSM for efficiency (accuracy and speed). Finally, PSM simulations are compared to
experiments with a commercial surgical forceps and soft cylinders.
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Fig. 1. Model of the gripper with a deformable soft object in red dotted line.

2. MODEL

Figure 1 illustrates the grasping scenario discussed in this paper: an angular gripper is squeezing a round
soft object. The fingers of the gripper are symmetrical and the center of the object is assumed to lie along
that axis of symmetry. For legibility purpose, the parameters in Fig. 1 are shown only for one finger. When
an actuation torque Ta is applied on both fingers simultaneously (assumed identical and shown as a green
arrow in the figure), the gripper closes to squeeze the object. The object shown at rest in orange then deforms
along the dotted red line due to the contact pressure from the fingers. The angle θa is the actuation angle
and its value at rest is θa0 in the following sections. A torsion spring with stiffness k f is attached to both
revolute joints to statically constrain the gripper when Ta > 0 but before it makes contact with object. Thus,
when the actuation torques vanish the fingers go back to their initial positions with this model.

Figure 2 presents a potential discretization of the object with a PSM. Points and springs define triangles
and it should be noted that all points except the center belong to the contour of the object. The center point
is used in this paper to fix the center of the object to the ground. As mentioned in the introduction, this
discretization was selected for its simplicity. Appropriate spring stiffnesses are calculated depending on
the Young’s modulus and Poisson’s ratio of the simulated material and contiguous triangles geometry as
proposed in [14]. For example, the stiffness estimate of the spring between the green and blue triangle in
Fig. 2 depends not only on the material but on the areas of these triangles and their lengths (r and h). The
contour points are assumed to be uniformly distributed along the circle. Their number are defined as the
number of triangles and all contour springs have the same stiffness coefficients (noted kext) as well as the
internal spring (noted kint). When decomposing a round object in that manner, care must be taken to avoid a
discretization leading to triangles with internal angles over 90°as it leads to negative stiffness with the Van
Gelder model [14].

The numerical model proposed in [13] and laying the foundation of the present paper requires three steps
as well as a few hypotheses that need to be recalled here. First, the motions are assumed slow and gravity
is negligible compared to the grasp forces. Then, frictionless contact forces are modelled and thus, these
contact forces are perpendicular to the finger surface. As for the methodology steps, the equation of the
generated contact forces fff p on the phalanges of an underactuated finger on rigid objects introduced in [15]
is first used. This equation relates these contact forces to an input torque vector ttt and also introduces
matrices depending on the transmission mechanism (the Transmission matrix TTT ), the geometry of the finger
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Fig. 2. Point-Spring Model of a Circular Object.

as well as the contact locations (the Jacobian matrix JJJ), i.e.:

fff T
p JJJ = tttT TTT , (1)

with :
fff ppp =

[
f1 . . . fp

]T (2)

tttgripper =


Ta

−k f ∆θa

−k2∆θ2
...

−kp∆θp

 (3)

where θi and ki (i ∈ [2, p]) are the interphalanx angles and spring stiffnesses at the joints between them. The
Transmission matrix corresponding to the angular gripper is simply:

TTT gripper =

 1 0 . . . 0

III

 (4)

and the grasp Jacobian matrix is:

JJJ =


rrrT

11xxx1 0 0 . . . 0
rrrT

12xxx2 rrrT
22xxx2 0 . . . 0

. . . . . . . . . . . . . . .
rrrT

1pxxxp rrrT
2pxxxp rrrT

3pxxxp . . . rrrT
ppxxxp

 (5)

where rrrki is the vector from point Ak to the ith contact point and xxxi the unit vector along the ith phalanx in
the direction of the end of the finger.

While Eq. (1) has been extensively used for underactuated hands, it can also be used for a fully-actuated
gripper as considered here but needs to be adapted. Indeed, if the number of contact per phalanx is greater
than one, the model of [15] is invalid and this situation is clearly to be expected for the interaction of
the angular gripper with a PSM based soft object, especially when it starts to be squeezed. In [13], a
methodology is presented to overcome this limitation of the original model. In order to use the equation
for p > 0 contacts on one finger, the latter is virtually divided into p links, or phalanges, connected by
revolute joints. Each virtual joint is also combined with a stiff rotational spring (k2 to kp). Therefore, Eq. (1)
becomes valid again since there is again only one contact per (virtual) phalanx and can be used to model the
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interaction between the finger and the points of the PSM. In the modeled scenario of the rotational finger,
the relationship between the input torques (due to the actuation and the springs) has to be calculated twice,
one for each finger, since the finger positions are not expected to always be equal when the discretization is
non-symmetrical.

The second step of the algorithm is the computation of the relationship between fff o the vector of internal
forces in the PSM and uuu the vector of the displacements of all the object points as presented in [13]. This
relationship can be expressed as:

fff o = SSSuuu−PPPkkk (6)

where fff o and uuu are vectors defined as:

fff o =
[

f 1
x f 1

y . . . f i
x f i

y . . . f n
x f n

y
]T (7)

uuu =
[
uuuT

1 . . . uuuT
i . . . uuuT

n
]T (8)

with uuui the displacement vectors of points Ai (see Fig. 2). The scalars f i
x and f i

y are the components of
the forces at the endpoints of the ith spring projected along the xxx and yyy axes of the reference frame (using
subscripts x or y to indicate which axis). The matrices SSS, PPP and vector kkk depend on the stiffnesses and the
positions of the points. Details on how to compute these matrices can be found in [13].

Finally, the last step is to establish a connection between Eq. (1) and (6). This can be done by using the
the projection matrices defined in [13] and the resulting equations are:

fff p = DDDx fff o, (9)

fff p = DDDy fff o, (10)

000 = DDDz fff o. (11)

Matrices DDDx and DDDy associate each internal force applied on a point to the corresponding phalanx force. The
forces are also projected to match the direction of the fixed frame. For phalanges not touching the PSM,
their contact forces are equal to zero. Matrix DDDz completes the static equilibrium equations for the contour
points not in contact with the phalanges.

From the initial position of the gripper and object pair, by increasing the input torques incrementally and
solving Eqs. (9), (10) and (11) the motion of the finger and deformations of the PSM can be simulated
efficiently. In the numerical examples of this paper, the model is implemented in Matlab and the difference
between the left- and the righthand side of these equations are numerically minimized with a Nelder-Mead
simplex algorithm.

3. NUMBER OF TRIANGLES

In this section, the accuracy of simulations with a PSM having different number of triangles are evaluated
by simulating the grasp of a small (r = 5cm), a medium (r = 7cm) and a large (r = 10cm) circle while varying
the number of contour points. The simulated configurations are presented in Fig. 3 and the associated
parameters are listed in Tab. 1 and 2. These results are obtained following the methodology of the previous
section.

Starting from the approximation calculated with the Van Gelder model as an initial estimate, the spring
stiffness values are calibrated to fit the results of a single corresponding FEA where a complete circle is
grasped. A large number of elements is first used in the simulation, i.e. when a greater number does not
affect the results significantly. Figure 4 illustrates an example comparing the angle θ between the fingers
for a specific input torque as calculated with an FEA software (ANSYS) and a PSM dividing the circle in 4,
12 and 20 triangles. Figure 5 shows for the three different sizes of circles the differences of position of the
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c) r = 0.1mb) r = 0.07ma) r = 0.05m

Fig. 3. Models of circular object grasped by a jaw gripper.

Table 1. Parameters of the finger in the simulation presented in Figs. 3, 4 and 5 (all lengths are in meters, angles in
degrees, stiffnesses in N ·m).

lr ll θa0 d3 w k f

0.2 0.2 45 0.025 0.01 0.073

finger after deformations with four to sixty triangles. The required computation time with the medium size
object is also illustrated in Fig. 6. For comparison, the FEA needs around 20,000s to compute one scenario.

From Fig. 4 and 5, one can observe that as expected the accuracy with a coarse mesh of the PSM is poor
especially with the largest object. With a significant increase in the number of triangles, the results converge
to a consistent difference. This was to be expected considering the same phenomenon appears with FEA.
However, it is noticeable that accurate results can be obtained with a rather limited number of elements,
especially again comparing with the FEA software. There is, however, a minimal number of elements to
retain: a PSM with four divisions for example, namely a square, is clearly too far from the original geometry
of the circle. During an optimization of a gripper with such a coarse discretization several architectures may
be poorly evaluated. Obviously, the finer the discretization is, the closer the results fit with the FEA. With
twelve points the evolution of the angle seems to converge to good results with most deformations. The
object side in contact with the gripper is typically flattened and thus, positions of points aligned on the
surface may not be as important as the number of those not in contact.

One can notice that the differences observed in Fig. 5 at sixty divisions (or more) are not zero. This is due
to an imperfect calibration of the spring stiffnesses but this remaining error is small. Depending on the size
of the object, the number of triangles to reach a prescribed range of accuracy varies. Indeed, the convergence
depending on this number of elements is slower with a small object (r = 5cm) but speeds up with larger radii.
In this example, with twenty triangles or more, all results seem to match the FEA quite well, as the remaining
gap with the FEA is not significantly improved if a finer discretization is tried. However, calculation time
also increases exponentially (see Fig. 6) with more points to compute and therefore, this value (20) may be
a good trade-off between computation time and accuracy. An identical evolution of calculation times was
observed with the other objects. It should be noted that when the meshing is too fine, the use of virtual
phalanx leads to convergence issue for the numerical model. Short distances between contour points imply
short virtual phalanges in case of multiple contacts and thus, the relative angles between these phalanges
become difficult to calculate.
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Fig. 4. Simulations with the numerical model compared to results with a FEA.
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Fig. 5. Precision of the simulation depending on the number of triangles and circles with three different radii.
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Table 2. Parameters of the object in the simulation presented in Fig. 3, 4 and 5 (all lengths are in meters)

r d1

0.05 0.004
0.07 0.013
0.1 0.025

0 10 20 30 40 50 60
number of triangles

0

200

400

600

800

1000

1200

ca
lc

ul
at

io
n

tim
e

(s
)

Fig. 6. Calculation times for different divisions of the object (r = 0.07).

4. EXPERIMENTS

To compare the proposed numerical model with experimental results, a surgical Hartmann alligator for-
ceps (illustrated in Fig. 7) is used to grasp deformable circles. This forceps is driven close by the action of
extension springs at the handle to provide a stable and consistent actuation torque at its jaws as a function of
their openings. Figure 8 shows the forceps grasping many different soft circles. These circular objects were
3D printed with 100% infill using a thermoplastic polyurethane (PolyFlex TPU95). The finger spring of the
model is in our case zero and the input torque Ta is created by the extension of the springs at the handle. To
measure the actuation torque at the jaw of the forceps, a force sensor (Marveldex Force Sensing Resistor)
was inserted during the grasp of several steel dowel pins with different diameters (instead of the soft object)
to measure the generated forces, and in all experiments the angles between the jaws and the distance of
contact were measured on pictures. The actuation torque Ta was then estimated for different openings of
the forceps based on a linear interpolation. Figure 10 presents the torque from the measurements with the
forceps and from the numerical model. After a calibration of the PSM to match the applied torque in one
scenario by comparison between the experiment and a simulation (see Fig. 8(f) and 9(f)), the other grasps
are simulated. The results corresponding to Fig. 8 are presented in Fig. 9. Based on the Young Modulus
of the thermoplastic polyurethane used (E = 29MPa) and the approximation of the Van Gelder model, a
coefficient of 0.033 was applied to the spring stiffnesses to fit the simulation.

Tabs. 3 and 4 present the parameters of the finger and the objects, respectively. For the simulations, the
spring value of k f and the initial angles of the jaw are chosen arbitrarily. A spring value equal to zero would
have led to an infinite number of possible position of the jaw. The torques due to this spring are therefore
subtracted from the actuation torque in order to calculate the real torque applied on the object. The resulting
torques correspond to the results shown in Fig. 10. These torques resulting from the model corresponding
to the angle observed in the experiment are similar to the measured ones. The gap between the values may
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Fig. 7. Surgical forceps.

(a) (b) (c) (d) (e) (f)

Fig. 8. Grasping by the forceps of circles with diameters of 4mm (a and b), 5mm (c and d) and 6mm (e and f).

be due to the lack of precision of the force sensor from which consistent readings were sometimes difficult
to obtain.

Shapes of the deformed PSM also match the observed ones with the forceps. One example where both
shapes from Figs. 8(d) and 9(d) are superposed is illustrated in Fig. 11. With the real and simulated jaws
at the same position, the computed deformations are very close in all cases, event at the edge of the fingers
where the curvature of the cylinder changed drastically. The small teeth on the forceps jaws also appear to
have little influence of the deformation of the objects.

5. CONCLUSIONS

While a FEA produces accurate simulations, the calculation time and complexity of using this approach is
a major drawback for certain applications, such as design optimizations or real-time rendering. Because of
its simplicity, a PSM is shown here to be an alternative to achieve accurate simulations within a reasonable
time. In this paper, a PSM was tested to simulate the interaction between an angular gripper and deformable
circles. The goal was to find the trade-off between accuracy and calculation time in terms of number of
elements used to approximate the circles with the ultimate objective to optimize future design of grippers.
After a brief introduction of the model developed in a previous work, this model is used to evaluate the
deformations of different sizes of objects depending on the number of triangles for different squeezing
pressures and the calculation times are recorded. Twenty elements seem to be sufficient in most cases.
However, to obtain the same level of accuracy, the results indicate that fewer elements are necessary with
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Fig. 9. Simulation of grasping by a forceps of cylinders with diameters of 4mm (a and b), 5mm (c and d) and 6mm (e
and f).
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Fig. 10. Comparison between the torque from the model and experimental results.

Fig. 11. Superposition of the deformed shape predicted by the model and an experimental picture (r = 2.5mm, d1 =
16mm).

2021 CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium 10



Table 3. Parameters of the finger in the simulation presented in Fig. 9 (all lengths are in millimeters)

lr ll d3 w
16 16 0.1 0.3

Table 4. Parameters of the object in the simulations presented in Fig. 9 (all lengths are in millimeters).

r d1

(a) 2 11
(b) 2 15
(c) 2.5 13
(d) 2.5 16
(e) 3 13
(f) 3 15

larger size objects (compared to the gripper). Finally, experimental observations with a surgical forceps
grasping cylinders and the equivalent results from the numerical model are compared. This comparison
yielded that both the experimental and simulated deformations are close to each other and thus, the model
seems accurate.
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