MULTI-ROBOT EXPLORATION OF UNKNOWN ENVIRONMENTS

Lillian D. Goodwin, Scott B. Nokleby
Mechatronic and Robotic Systems Laboratory

Ontario Tech University
Oshawa, ON
Email: Lillian.Goodwin @ ontariotechu.ca; Scott.Nokleby @ ontariotechu.ca

ABSTRACT

Frontier navigation is a viable solution for exploring unknown environments in robotic teams. In this
work, an implementation of frontier navigation in both simulated and real-world scenarios is investigated.
Rapidly exploring randomized trees are utilized for frontier definition and map merging for global explo-
ration. The architecture of choice is a centralized method, assuming connectivity to a central executive.
The results show that the implementation works, but there is an opportunity to make the exploration more
efficient to make better use of the robots.

Keywords: frontier navigation; multi-robot exploration; Robot Operating System (ROS).

EXPLORATION MULTI-ROBOTS D’ ENVIRONNEMENTS INCONNUS

RESUME

La navigation de frontiéres est une solution viable pour I’exploration d’environnements inconnus par des
équipes de robots. Dans ce travail, un nouveau cadre pour la mise en ceuvre de la navigation de frontieres
est étudié dans le Robot Operating System (ROS), tant dans des scénarios simulés que réels. L’exploration
rapide d’arbres aléatoires est utilisée pour la définition de la frontiere, tandis qu’on a recours a la fusion de
cartes pour I’exploration globale. L’architecture choisie est centralisée, car les robots Turtlebot3 Burgers uti-
lisés sont tous reliés a un méme centre décisionnel. Les résultats montrent que la mise en ceuvre fonctionne,
mais qu’il demeure des améliorations possibles pour rendre 1’exploration plus efficace.

Mots-clés : navigation de frontieres, exploration multi-robots, Robot Operating System (ROS).

2021 CCToMM Mechanisms, Machines, and Mechatronics (M?) Symposium 1

1. INTRODUCTION

Robotic teams can be a great asset for exploration tasks, however, the control and coordination of these
teams proves to be an age old research question. The task starts with the methodology behind achieving
successful exploration and continues with the coordination of a team of mobile robots within the exploration
process. The objective of this research is to coordinate multiple robot systems (MRS) in exploration of an
unknown environment. This will be achieved in simulated scenarios and real-world tests.

The outline for the paper is as follows: Section [2] presents the background and literature review; Section [3]
presents the methodology; Section [presents the experimental design; Section [5] presents the results and
discussion; and Section [6] presents the conclusions and future work.

2. BACKGROUND

A brief review of exploration in robotic teams will be conducted, including frontier exploration algo-
rithms/coordination and map-merging techniques.

2.1. Frontier Exploration

When exploring previously unknown areas different strategies exist to control the team of robots to suc-
cessfully investigate the area.
Frontier navigation was first proposed by Yamauchi in 1997 [[1]. In his work, Yamauchi defined a frontier in
terms of an occupancy grid where a frontier cell is an open space adjacent to an unknown space. He defined
frontier exploration as exploring the boundary between known and unknown areas. In 1998 Yamuachi [2]]
furthered his work to MRS. In his design, the exploration was a completely distributed process, using a
nearest based allocation method for goal assignment. His design involved having each agent travelling to
the nearest frontier according to the agents individual local map. This process was noted to create a lot of
overlap in map coverage, as well as the assignment of frontiers.
With the goal of increasing coordination of the exploration task, Simmons, et al. [3]] introduced a utility-
based method for the assignment of frontiers. This made use of a centralized server or central executive
to facilitate a bidding process. The bid was quantified as the net information gain taking into account the
expected utility when reaching a goal and subtracting the cost of traversing to the goal. The utility function
has also been modified in different scenarios to add different benefits. For example, Rooker and Birk [4]
modified their definition of utility to constrain agents to stay within communication range to a central server.
Some other researchers modified the definition of cost to further optimize the goal assignments. Burgard,
et al. [5] used value iteration to define cost. Pal, et al. [6] take into account, not only the distance, but the
energy consumption required to reach a goal point.
Furthering the bidding structure approach, Zlot, et al. [7] eliminated the need for a centralized server by
introducing a market-based economy approach to the task allocation scheme. Gerkey and Mataric [8]] intro-
duced an auctioneer type of system to manage the assignment of frontiers.
Another approach, as used by Wurm, et al. [9], utilized the Hungarian method created by Kuhn [10] to
optimize the task assignments. This method treats the assignment problem as a matrix of costs and uses the
algorithm to solve for the lowest cost assignment. However, this method can become quite computationally
burdensome, as each agent must determine the cost to each goal.
The proposed system for this research consists of utilizing a frontier-based method for exploration and map-
merging using either known or unknown starting locations. The architecture of choice will be a centralized
system where each agent communicates with one central executive.

2021 CCToMM Mechanisms, Machines, and Mechatronics (M?) Symposium 2

2.2. Map-merging

The next question when dealing with MRS in exploration is how can a team of robots collaboratively
build one map together? When merging maps together a common dilemma exists, namely, one must be
able to determine the relative positions of each robot’s local map to create one global map. In Figure [I]an
example of the common map-merging dilemma is shown.

8

.
Fs
hm » °

Fig. 1. Map-Merging Dilemma

Many common map-merging methods assume known initial correspondences to merge multiple maps

together in a MRS exploration. For instance, in the work by Simmons, et al. [3] each agent builds their
own local map and a central server is utilized to build the local maps into a global map, using a maximum
likelihood estimate. Other approaches use a distributed map-merging technique like that of Yamuachi [2].
In his work, each robot holds its own local evidence grid. Each time an agent reaches a frontier it broadcasts
the map information for the other agents to update their own global map.
Some techniques exist that try to negate the need for known initial correspondences, such as Fox, et al. [[11].
They utilized a method where odometry information and laser scan information is exchanged every time
robots come within communication range. The maps are then merged using a particle filter based method.
Zhou, et al. [12] used a rendezvous solution where similarly relative poses are exchanged among different
robots at rendezvous points to merge maps together.

3.METHODOLOGY

In the following section a brief review of the hardware/architecture will be conducted along with a review
of the utilized software.

3.1. Hardware

The robots used in this work are open source robots, namely, the Turtlebot3 (TB3) Burger. TB3s have
been designed to work with the Robot Operating System (ROS). These robots consist of a Raspberry Pi
computer, CR driver board, differential drive motors, and LiDAR range sensor. The footprint for a TB3
can be found below in Figure|2] As mentioned above, TB3s are differential drive robots, consisting of two
wheels with separate motors. The type of steering is labelled skid steering. The equations of motion can be

2021 CCToMM Mechanisms, Machines, and Mechatronics (M?) Symposium 3

TurtleBots Burger

IZI = 138 x 178 x 192
(L xW x H, mm)

192mm (H)

f——
178mm (W) * 't 138mm (L)

Fig. 2. Turtlebot3 Burger Footprint [13]]

defined as:
cos(q) cos(q)
2 3 2 2
X
445 = sinz(q) sinz(q) VR (1)
q '

1 _1

I 1

where X, y, and q are the translation and angular velocities of the robot, q is the heading angle, and / is the
distance between wheels. For the TB3s, / is 160 mm.

3.2. Software

For the scope of this ROS Kinetic Kame was used. ROS is a framework created to facilitate the operation
and control of robotic systems. It consists of a collection of packages and libraries developed for simulation
and control. After the installation of the basic TB3 packages |(http://wiki.ros.org/turtlebot3), many different
packages have been utilized and modified as discussed below.
For path planning, the navigation stack is utilized, namely move_base |(http://wiki.ros.org/move_base).
Move_base consists of local and global path planning techniques for robotic control.
The global planner utilized in this work is navfn |(http://wiki.ros.org/navfn). Navfn first assumes a circular
robot and aims to find the minimum cost to travel from the start point to the goal point. It uses an implemen-
tation of Dijkstra’s algorithm to plan the path. Dijkstra’s algorithm uses a graphical based method to find the
least weighted path by representing the different points on a map using vertices. It visits the current lowest
cost vertex and then calculates the distance from that vertex to each unvisited neighbour while updating the
lowest cost for each vertex on every iteration [[14]. A simple example of Dijkstra’s algorithm can be seen in
Figure 3]
The local planner utilized is dwa_local_planner |(http://wiki.ros.org/dwa_local_planner), which stands for
Dynamic Window Approach (DWA) as proposed by Fox, et al. [15]]. This planner intakes the global path
given and its own local costmap and seeks to control the robot along a global path. The basic algorithm
functions by sampling different velocities within the dynamic window, taking into account constraints of
what velocities are achievable by the robot within a short period of time. The trajectories within that win-
dow that cause collisions are discarded. The optimal path is chosen based upon the trajectory that comes
closest to the goal, global path, maximizes speed, and maintains distance from obstacles. A simple example

2021 CCToMM Mechanisms, Machines, and Mechatronics (M?) Symposium 4

http://wiki.ros.org/turtlebot3
http://wiki.ros.org/move_base
http://wiki.ros.org/navfn
http://wiki.ros.org/dwa_local_planner

Fig. 3. Simple Example of Dijkstra’s Algorithm

of this can be seen in Figure] where the illegal trajectories are in red, the possible trajectories are in blue,
the green path represents the global path, and the star represents the goal point.

Fig. 4. Simple Example of the DWA Approach for Local Path Planning

Additionally, a localization filter was used to decrease the errors in dead-reckoning. AMCL |(http://wiki.ros.
org/amcl), which stands for, Adaptive Monte Carlo Localization as proposed by Fox, et al. [[16] was used.
This package is used to recover for drift in dead-reckoning, by using a particle filter to estimate the pose of
the robot against its global map. Each particle represents a possible state that the robot could be, and the
belief is represented by a probability density function distributed over the state space.

To create maps of the environments, the gmapping package was utilized |(http://wiki.ros.org/gmapping). The
gmapping package requires a robot equipped with odometry readings and a laser range finder. The gmap-
ping node takes in the sensor data and converts it to a binary occupancy grid. In order to use this package, a
transformation from the laser scan information received to the base link of the robot is needed along with a
transformation from the base link to the odometry.

For map-merging the package utilized in this approach is a package created by Horner [[17]. In this package,
multiple robots can be used to build one global map. This package contains the option of merging maps
based upon known starting locations or unknown starting locations.

With known starting locations, the technique uses a rigid transformation between the different robots to
merge the maps together. It takes in multiple occupancy grids and stitches together their maps based upon
the transformations provided by the user. This can be problematic when dealing with unknown initial poses
or uncertainty in the initial poses.

2021 CCToMM Mechanisms, Machines, and Mechatronics (M?) Symposium 5

http://wiki.ros.org/amcl
(http://wiki.ros.org/amcl)
http://wiki.ros.org/amcl
(http://wiki.ros.org/amcl)
http://wiki.ros.org/gmapping

With unknown starting locations the technique uses a heuristic approach to determine the transformation
between the grids of the robots. Features are determined using a feature detector and the algorithm tries to
find matches using pairwise matching. If there are enough matches above a threshold value, these matches
are then used to find transformations between features. If the confidence is high enough the algorithm will
then determine a global transformation.

For coordination of the MRS exploration the Rapidly-exploring Randomized Trees (RRT) package is used
as developed by Umari et al. [18]. They break their algorithm into three different modules, as can be seen
in Figure 5] which has been modified for the TB3.

Global Frontier

Detectors
Task Allocation
Local Frontier

Detectors

Map Updates

Fig. 5. Modules of RRT Exploration Package for the TB3

Frontier detection is done on both a global and local scale. They define frontiers as points that are reached
by RRT. The essence of RRT is to sample surrounding spaces using points generated at random and the
points that are generated are used to extend branches of a tree-like structure. In local frontier detection, the
tree growth is reset every time a new point is found. The global frontier detection allows the tree to grow to
reach the entire map.

The filter module takes a cluster of frontier points and groups them into one centroid. It also deletes old
frontier points on each iteration.

This robot task allocation module takes into account the navigation cost and the expected information gain
and calculates the total revenue. This also takes into account the hysteresis gain that ensures a robot is more
biased to explore frontier points in the region. The revenue equation as defined in [18]] is:

R(xp) = Vh(xp,x)I(xg) N(xy) 2)

1 lf” Xy Xf JJ> hrad

h(xr,x,) =
(! r) hgain hgain > 1

3)
where | is a weight in regards to the information gain, x; is the frontier point, x, is the radius, & is the
hysteresis gain, [is the information gain, and N is the navigation cost.

4. EXPERIMENTAL DESIGN

The experiments were designed for both simulated and real-world environment scenarios. The frontier
exploration method of choice is RRT exploration [18]. RRT exploration requires the configuration of multi-
ple robots to utilize the navigation stack and gmapping packages. It is required then, to configure new launch
files to allow for the simultaneous launch of many TB3s with their associated navigation stack, gmapping,
and AMCL nodes. For each of the robots a local costmap and a single global costmap are published, these
costmap files work in conjunction with the TB3 global and local path planners. In Table[I} a summary of
the different packages used for the different experiments are provided.

2021 CCToMM Mechanisms, Machines, and Mechatronics (M?) Symposium 6

Table 1. Summary of Packages

| Parameters | Simulation | Real-World
Environment - Gazebo - Basement
Starting Location - Known - Unknown
Mapping - Gmapping - Gmapping
Navigation - move_base - move_base
Goals - RRT Exploration - RRT Exploration
Map-Merging - Multi-map merge - Multi-map merge

4.1. Simulated Environment
For the simulations, the TB3 house environment from the TB3 packages was chosen, as can be seen in
Figure[6] The starting positions are known and given in the launch files for the simulated environment. Map-

Fig. 6. Gazebo Environment with Multiple TB3s

merging is accomplished with known starting locations. The virtual TB3s are spawned using the Gazebo
launch file for the TB3 house. A main launch file was written to start all three TB3s under namespace, along
with their individual gmapping and move_base nodes. In the same launch file, two static transformations
are published, the map-merging file is launched, and the RViz node is run. The RRT exploration file for
three robots is then launched, the exploration window is defined and the robots will begin to autonomously
navigate.

4.2. Real-World Environment

For the real-world experiment, the environment was changed to a basement environment as can be seen
in Figure[7b] In the real-world experiments, the TB3s are brought up in their starting positions. In this main
launch file two TB3s are brought up in namespace, then their individual gmapping, move base, and AMCL
files are launched within a grouping. The RViz node is configured to view all of the important topics for the
exploration, including the map merge topic, individual map topics, global path planner, local path planner,

2021 CCToMM Mechanisms, Machines, and Mechatronics (M?) Symposium 7

	Introduction
	Background
	Frontier Exploration
	Map-merging

	Methodology
	Hardware
	Software

	Experimental Design
	Simulated Environment
	Real-World Environment

	Results and Discussion
	Simulation Results
	Real-World Results
	Discussion

	Conclusions and Future Work

