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ABSTRACT
This paper presents a novel algorithm for the continuous approximate synthesis of planar four-bar function

generators using an algebraic form of the input-output equation for any given architecture minimising the
structural error. Each identified mechanism architecture is evaluated relative to a structural error minimising
mechanism generated with a Newton-Gauss non-linear optimisation procedure to estimate the performance
of the new algorithm. Finally, an algorithm is presented wherein both type and dimensional synthesis of the
function generating mechanism may be accomplished simultaneously without reliance on heuristics.

Keywords: continuous approximate kinematic synthesis; structural error minimisation; planar four-bar
function generators.

SYNTHÈSES SIMULTANÉES DE TYPE ET DIMENSIONNELLE APPROXIMATIVES
CONTINUES DE GÉNÉRATEURS DE FONCTION POUR TOUS LES MÉCANISMES PLAN À

QUATRE BARRES

RÉSUMÉ
Cet article présente un nouvel algorithme pour la synthèse approximative continue de générateurs de

fonctions plan à quatre barres en utilisant une forme algébrique de l’équation d’entrée-sortie pour toute ar-
chitecture donnée minimisant l’erreur structurelle. Chaque architecture de mécanisme identifiée est évaluée
par rapport à un mécanisme de minimisation d’erreur structurelle généré avec une procédure d’optimisation
non linéaire de Newton-Gauss afin d’estimer les performances du nouvel algorithme. Enfin, un algorithme
est présenté dans lequel à la fois les synthèses de type et dimensionelle du mécanisme de génération de
fonction peuvent être accomplis simultanément sans nécessiter d’heuristique.

Mots-clés : synthèse approximate continue ; minimisation d’erreur structurelle ; liaison plane à quatre
barres.
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1. INTRODUCTION

The study of planar four-bar linkages involves a large variety of problems, ranging from those concerned
with guiding a point along a specific curve (the coupler curve), to guiding a rigid body (the coupler) through
a series of positions and orientations (the Burmester problem), to further refining these guidance problems
to generate specific trajectories [1] (poses with an instant in time associated with each discrete pose), while
also containing problems which are concerned with the transmission of forces and torques [2] through the
links, or designing an optimally balanced linkage [3]. An additional subset of this gamut of problems is the
function generation problem; it consists, primarily, of developing a mechanism which is able to approximate,
in some sense, an input-output (IO) relationship for a given planar linkage architecture comprising RR-, RP-,
PR-, or PP-dyads1. That is to say, given some desired functional relationship between the input and output
links of a planar four-bar mechanism, develop the linkage which best approximates this function over some
desired range. This IO function generation problem is the focus of this paper. Fig. 1 illustrates a function
generating four-bar RRRR linkage. If link a1 is the input link and link a3 is the output the function is
specified as θ4 = f (θ1).

Fig. 1. A general planar 4R function generator.

The function generation problem is often focused on either the design, or structural error minimisation.
The design error indicates the residual incurred by a specific linkage in satisfying its synthesis equations,
whereas the structural error is the difference between the prescribed and generated linkage output values for
a given input value [4]. The design error minimisation can be expressed as a linear least squares problem,
while the more relevant problem of the structural error is a highly non-linear problem which requires an
iterative optimisation approach in order to compare the generated function to the prescribed function [5].

2. ALGEBRAIC IO FUNCTIONS

It has been shown in [5, 6] that as the cardinality of the data set which is used for the design error opti-
misation of any given planar four-bar linkage tends to infinity, the solution for the design error minimising
linkage parameters converges to that of the structural error; this indicates that the solution to the non-linear
structural error problem is implied by the solution of the linear design error problem over an infinite number
of IO pairs. From this idea, the concept of continuous approximate IO function generator synthesis arose.

Classically, the solution to these problems is conducted using the Freudenstein equation [7], and it has

1R and P indicate revolute and prismatic joints connecting a pair of rigid links, also known as R- and P-pairs.
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been demonstrated in [6] that this form of the function generator problem can be integrated in order to
derive the design and structural error minimising linkage for a given IO function over some arbitrary range;
however, the expressions and functions required to perform this minimisation are exceedingly complicated,
and a more compact form of the problem is desired. It will herein be shown that a simplification of the
trigonometric Freudenstein IO relationship is achieved with the algebraic IO equation.

The algebraic IO equations were derived in [8, 9] through the use of displacement constraints projected
into a planar subset of Study’s soma space for each of the planar four-bar function generator architectures:
four-bar linkages comprised of two RR-dyads; one RR-dyad and one PR-dyad; and two PR-dyads. We
will commence with the algebraic IO equation for the planar RRRR mechanism, which will henceforth be
referred to as a 4R mechanism, see Eq. (1). In this equation the IO variables v1 and v4 are the tangent of the
half angle parameters of the input and output angles θ1 and θ4, illustrated in Fig. 1:

Av2
1v2

4 +Bv2
1 +Cv2

4 +D−8a1a3v1v4 = 0; (1)

where 
A
B
C
D

−8a1a3

=


(a1−a2−a3 +a4)(a1 +a2−a3 +a4)
(a1−a2 +a3 +a4)(a1 +a2 +a3 +a4)
(a1−a2 +a3−a4)(a1 +a2 +a3−a4)
(a1 +a2−a3−a4)(a1−a2−a3−a4)

−8a1a3

 . (2)

For an RRRP mechanism, the IO parameters are the input angle parameter v1 and the output P-pair linear
excursion a3 while the constant design parameters are link lengths a1, a2, a4, and the slider inclination angle
parameter v4, illustrated in Fig. 2a. Following an identical derivation methodology the RRRP algebraic IO
equation is obtained:

Aa3
2v1

2 +Ca3v1
2−8a1a3v1v4 +Ba3

2 +Ev1
2 +Da3 +F = 0; (3)

such that 

A
B
C

−8a1v4
D
E
F


=



v2
4 +1

v2
4 +1

−2(v4−1)(v4 +1)(a1 +a4)
−8a1v4

2(v4−1)(v4 +1)(a1−a4)
(v2

4 +1)(a1 +a2 +a4)(a1−a2 +a4)
(v2

4 +1)(a1 +a2−a4)(a1−a2−a4)


. (4)

Following from these two cases, the algebraic IO equation for a PRRP mechanism, with IO variables a1
and a4 and constant design parameters v1, a2, and v4, see Fig. 2b, can be obtained in the same way, yielding:

Aa1
2 +Ba3

2 +Ca1a3 +Da1 +Ea3 +F = 0; (5)

where 

A
B
C
D
E
F

=



(v2
4 +1)(v2

1 +1)
(v2

4 +1)(v2
1 +1)

−2(v1v4− v1 + v4 +1)(v1v4 + v1− v4 +1)
2a4(v2

4 +1)(v1−1)(v1 +1)
−2a4(v4−1)(v4 +1)(v2

1 +1)
−(v2

4 +1)(v2
1 +1)(a2−a4)(a2 +a4)

 . (6)
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(a) A general planar RRRP mechanism. (b) A general planar PRRP mechanism.

Fig. 2. Planar RRRP and PRRP mechanisms.

Typically, the design error minimisation for the function generation problem may be undertaken from this
juncture; after taking some set of n > 3 IO pairs over the desired input range using the desired IO function
and appropriate variables for the desired architecture, the error residual of this algebraic IO equation is
minimised in order to obtain the design error minimising linkage parameters over the desired input range.
However, given that the endeavour of the work presented herein is towards the continuous approximation
method, and not a demonstration of the discrete method (see [9] for these discussions), some alterations to
the algebraic IO equation must be made so as to accommodate the integration of the resulting equation in
order to obtain an effective cardinality of infinity for the set of IO pairs for the minimisation step.

3. CONTINUOUS APPROXIMATE SYNTHESIS VIA ALGEBRAIC IO CURVE

3.1. Continuous Approximate Synthesis Algorithm Overview
While the following sections of this paper will cover, in detail, the algorithm used for each specific planar

function generator architecture case. Each of these three algorithms follow an identical set of steps which
differ only in the algebraic input-output equation used to initiate the process. These steps are as follows:

1. Square the desired algebraic input-output relationship for the planar four bar linkage architecture in
question.

2. Separate this squared function into a vector containing the linkage parameters and a synthesis matrix,
S.

3. Substitute the desired functional relationship between the input and output variables into the output
parameter in the synthesis matrix, S.

4. Integrate this matrix, numerically, over the desired bounds for the approximation.

5. Expand the matrix-vector formulation with the integrated matrix.

6. Minimise the residual of this expanded synthesis equation over the field of real numbers.
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After the minimisation procedure outlined in the final step, the resulting linkage parameters are the ones
which will minimise the residual of the synthesis equation for the approximation over the desired range,
thus best approximating the desired input-output relationship. After this step, the actual generated input-
output function may be solved directly from the algebraic input-output equation with the optimised linkage
parameters substituted. From this point, each case will be described in detail with specific examples of the
completed synthesis problem and a comparison with the discrete approximation problem.

3.2. Continuous Approximate Synthesis for the 4R Function Generator
First, we begin by squaring the algebraic IO equation in order to eliminate the residual error values that

are equal in magnitude yet opposite in sense, thus effectively annihilating the effects of these errors from the
approximation. In order to accomplish this, the equation is broken into a matrix and vector representation,
where the matrix contains all of the IO variables (in the 4R case, (v1,v4) respectively), while the vector
which pre- and post-multiplies this matrix contains the linear functions of the linkage parameters in Eq. (2).
Hence, the squared IO equation for all 4R linkages can be expressed as,

[
A B C D −8a1a4

]
S(v1,v4)


A
B
C
D

−8a1a4

= 0, (7)

where,

S(v1,v4) =


v4

1v4
4 2v4

1v2
4 2v2

1v4
4 2v2

1v2
4 2v3

1v3
4

0 v4
1 2v2

1v2
4 2v2

1 2v3
1v4

0 0 v4
4 2v2

4 2v1v3
4

0 0 0 1 2v1v4
0 0 0 0 v2

1v2
4

 . (8)

In a second step, some desired function is specified for planar 4R linkages as v4 = f (v1), is then substituted
into Eq. (8) yielding

S(v1, f (v1)) =


v4

1 f (v1)
4 2v4

1 f (v1)
2 2v2

1 f (v1)
4 2v2

1 f (v1)
2 2v3

1 f (v1)
3

0 v4
1 2v2

1 f (v1)
2 2v2

1 2v3
1 f (v1)

0 0 f (v1)
4 2 f (v1)

2 2v1 f (v1)
3

0 0 0 1 2v1 f (v1)
0 0 0 0 v2

1 f (v1)
2

 . (9)

Once this substitution has been made, the resulting matrix is integrated between the bounds desired for the
approximation, leading to the following expression, required for the minimisation algorithm,

min
(a1,a2,a3,a4)∈R

[A B C D −8a1a4
]∫ v1max

v1min

S(v1, f (v1))


A
B
C
D

−8a1a4


 . (10)

In Eq. (10), the elements [A,B,C,D] correspond to the linear factors defined in Eq. (2). However, in general,
no arbitrary set of link lengths may be assumed for planar function generators as a starting point for the
minimisation algorithm, as these procedures are immensely sensitive to the initial guess.
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In order to acquire an effective initial guess to start the solver the problem must first have a starting set
of link length values which are, in some sense, relatively close to the desired optimal linkage. In order to
accomplish this, one will solve the exact synthesis problem for this linkage; given three points within the
desired IO range of the mechanism, using the same v4 = f (v1) relationship, and normalising the linkage
leading to a4 = 1. Given the initial set of link lengths, and a choice set of constraints for the optimiser,
the linkage of best fit may be obtained. Defining the constraints that are required for these linkages to
represent a real planar linkage is somewhat straight forward; it is simply required that a2

i ≥ 0, forcing the
link lengths to be real numbers. Negative link lengths can not be discarded, as given the range and function,
any of the link lengths may in fact be negative in value, thus this constraint is designed solely to discard the
imaginary solutions to this problem. While the concept of a negative length may appear to be fundamentally
flawed insofar as the fact that a length can not be negative, it is more accurate to think of a link length as
a directed distance on a vector which connects two revolute joint centres A and B. While a positive link
length parameter may indicate that the directed distance connects the revolute joint centres in order of AB, a
negative link length parameter may be thought of as connecting the same two revolute joint centers in order
of BA, opposite in sense to the positive ordering.

Given the novelty of this approach, the following examples for all planar function generating linkage
architectures, where the coupler can have general plane motion, will be presented and compared to existing
solutions within the literature. For example, the following demonstration for the 4R linkage architecture,
will be computed with the same function published in [8]. The desired function is

v4 = 2+ tan
(

v1

v2
1 +1

)
, (11)

where (v1,v4) represent the tangent half angle parameters associated with the input and output link orienta-
tion, respectively. From this point, the functional relationship v4 = f (v1) is substituted into Eq. (8). Once
this substitution has been made, the entire matrix is integrated between the bounds desired for the approxi-
mation; in this case v1 = 0..2. Upon completion of this integration, the squared IO equation can be used to
identify design parameters a1, a2, a3, and a4 that minimise the structural error.

Reported in [8] are the link lengths optimised with a Newton-Gauss approach using a discrete IO set
whose cardinality is 10, which are 

a1
a2
a3
a4

=


−0.23
1.20
1.43

1

 . (12)

Whereas the link lengths derived from the continuous approximation method are,
a1
a2
a3
a4

=


−0.22
1.18
1.43

1

 , (13)

showing an extremely high degree of agreement between the two results. Fig. 3 shows both the precision
point and optimised linkages in broken lines, with the solid line representing the desired function from
Eq. (11). The precision point and optimised linkage functions are both solved directly from the algebraic IO
equation as polynomials in the form of v4 = f (v1).

Given the proximity of these curves to one another, a simple visual inspection is insufficient to deter-
mine the magnitude of the differences between the curves, thus a different method using the integrals of
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Fig. 3. Comparison of RRRR desired and generated functions.

these functions to compute the percentage error from one method to the other is used. For the 4R function
generator case, the following errors are observed relative to the desired function,

Precision Point Method = 0.0953%, (14)

Continuous Approximate Optimised Function = −0.0126%, (15)

indicating a reduction in the percentage error associated with the continuous approximation method by a
factor of approximately 7.556.

3.3. Continuous Approximate Synthesis for the RRRP Function Generator
Given the nature of the continuous approximate design error minimisation, the approach is easily modified

for any desired planar four-bar planar function generator topology. First, a single revolute joint at the distal
end of Fig. 1 will be replaced by a slider, for a linkage configuration shown in Fig. 2a. After Eq. (3) is
squared, Eq. (16) may be pre- and post-multiplied by Eq. (4) to obtain the full squared IO function for the
RRRP linkage architecture:

S(v1,a3) =



v4
1a4

3 2v2
1a4

3 2v4
1a3

3 2v3
1a3

3 2v2
1a3

3 2v4
1a2

3 2v2
1a2

3
0 a4

3 2v2
1a3

3 2v1a3
3 2a3

3 2v2
1a2

3 2a2
3

0 0 v4
1a2

3 2v3
1a2

3 2v2
1a2

3 2v4
1a3 2v2

1a3
0 0 0 v2

1a2
3 2v1a2

3 2v3
1a3 2v1a3

0 0 0 0 a2
3 2v2

1a3 2a3
0 0 0 0 0 v4

1 2v2
1

0 0 0 0 0 0 1


. (16)

After substituting some desired functional IO relationship, which for the planar RRRP function gener-
ating linkages is specified as a3 = f (v1), into Eq. (16) and integrating between the bounds desired for the
approximation at hand, the expression used in the minimisation algorithm becomes,
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min
(a1,a2,a4,v4)∈R


[
A B C −8a1v4 D E F

]∫ v1max

v1min

S(v1, f (v1))



A
B
C

−8a1v4
D
E
F




, (17)

where [A,B,C,D,E,F ] are the parameter terms for the algebraic input-output equation from Eq. (4). Once
again, in order to compare the continuous approximation methods with previously accepted values, a func-
tion from [9] will be used. Specifically, the a3 = f (v1) IO relationship for this example is,

a3 =
−v1

2 +1
v12 +1

, (18)

between the bounds of v1 =−3..3. Upon solving the precision point problem and integrating Eq. (16) with
the desired function in place of a3, the squared IO function may be minimised using the same constraints as
were implemented in the 4R case. From [9], the following linkage parameters were identified following a
Newton-Gauss iterative minimisation routine over fifty points within the design space,

a1
a2
a4
v4

=


0.9426
1.1587

1
1.5 ·10−5

 , (19)

while the linkage parameters identified through the continuous approximate synthesis methods are,
a1
a2
a4
v4

=


0.9554
1.1894

1
1.17 ·10−10

 , (20)

again showing a very high level of agreement between the solution to the non-linear Newton-Gauss solution,
and the linear continuous approximate synthesis methods. Fig. 4 shows three functions for this RRRP
function generator example; in broken lines, it shows the precision point method alongside the optimal
linkage, while the solid line represents the desired IO relationship.

Once again, the integral of the equations resulting from this optimisation and precision point method,
extracted directly from the algebraic IO function generator equation as a polynomial in the form of a3 =
f (v1), is compared to the ideal function,

Precision Point Method = −117.89%, (21)

Continuous Approximate Optimised Function = −52.17%, (22)

showing a reduction in the error relative to the precision point method of a factor of approximately 2.26.

3.4. Continuous Approximate Synthesis for the PRRP Function Generator
Continuing from the previous section, the first revolute joint in the chain will now be replaced with a

prismatic joint, creating a PRRP planar function generator, illustrated in Fig. 2b. Once again, Eq. (5) is
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Fig. 4. Comparison of RRRP desired and generated functions.

squared, following which it may be written as Eq. (23) which is pre and post-multiplied by Eq. (6) to obtain
the full squared algebraic IO function generator equation for the PRRP architecture.

S(a1,a3) =



a4
1 2a2

1a2
3 2a3

1a3 2a3
1 2a2

1a3 2a2
1

0 a4
3 2a1a3

3 2a1a2
3 2a3

3 2a2
3

0 0 a2
1a2

3 2a2
1a3 2a1a2

3 2a1a3
0 0 0 a2

1 2a1a3 2a1
0 0 0 0 a2

3 2a3
0 0 0 0 0 1

 . (23)

Again, a desired functional relationship, which is specified for planar PRRP linkages as a3 = f (a1) can
be substituted into Eq. (23). After integrating this expression between the desired bounds of this function
generator, the expression for the minimisation then becomes,

min
(a2,a4,v1,v4)∈R


[
A B C D E F

]∫ a1max

a1min

S(a1, f (a1))



A
B
C
D
E
F



 , (24)

where [A,B,C,D,E,F ] are the linkage parameter vectors for the PRRP architecture listed in Eq. (6). Com-
paring the standard methodologies to the continuous approximate methodology will once again be com-
pleted through the use of a test case included in [9]. The a3 = f (a1) IO function in this case is,

a3 = cos(a1) , (25)

over the range of a = 0..2. The solution will proceed in identical fashion to the previous cases, with the
precision point method being used to generate initial guesses, at which point the squared algebraic IO matrix
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in Eq. (23) is integrated between the bounds of this function generator problem, and subsequently minimised
assuming that the linkage parameters are real numbers. From [9], it is known that the structural error
minimising linkage parameters resulting from the nonlinear Newton-Gauss optimisation procedure are,

a2
a4
v4
v1

=


2.0313

1
−1.1868
0.1353

 , (26)

while the optimal link lengths from the continuous approximate algebraic IO method are,
a2
a4
v4
v1

=


2.0364

1
−1.1986
0.1291

 , (27)

showing again, a large degree of agreement between the discrete approximate structural error minimising
linkage, and the continuous approximate design error minimising linkage. Following this procedure, Fig. 5
shows the results, with the desired function presented with a solid line, and the broken lines representing the
precision point method and continuous approximate method.

Fig. 5. Comparison of PRRP desired and generated functions.

Once again, these functions are compared via integration over the bounds of the approximation range
in order to compare the precision point method to the continuous approximation method. The percentage
errors relative to the desired IO function are,

Precision Point Method = −1.300%, (28)

Continuous Approximate Method = −0.054%, (29)

showing a reduction in the error between these methods of a factor of approximately 23.84.
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4. COMBINED TYPE AND DIMENSIONAL SYNTHESIS FOR PLANAR FOUR-BAR FUNC-
TION GENERATORS

Typically, when a function generator is being optimised, the first step that the designer takes upon final-
ising the function which is to be approximated over some given range is to choose the linkage architecture
that will be used to generate it. However, it is possible that the linkage architecture which was chosen by
the designer is not necessarily the globally optimal planar four-bar linkage for the generation of this func-
tion over the desired range. This may be remedied by designers who are intimately familiar with linkage
design, but this is a process that relies much on the skill of the individual and very little on the efficiency of
the optimisation process itself. Therefore, it is proposed that the type and dimensional synthesis for planar
four-bar function generating linkages is combined so as to remove this decision based portion of the design
process in general. In essence; given a function to be generated by a planar four-bar linkage, which linkage
architecture best approximates it over the given range, and how does the function that is generated by the
linkage compare to the desired function? Given some function, h = f (t), the following substitutions are
proposed for each planar four-bar linkage architecture.

Variable Linkage Architecture
General Case 4R RRRP PRRP

t v1 v1 a1
h v4 a3 a3

Table 1. Variable substitutions used for continuous approximate type and dimensional planar function generator syn-
thesis.

For the purposes of the following concurrent type and dimensional synthesis example, the function to be
approximated will be,

h =
−t2 +1
t2 +1

, (30)

such that t = 0..1. Following the exact procedure as depicted in the aforementioned demonstrative cases,
each mechanism may be synthesised and compared to each other. For the sake of brevity, Table 2 shows
all the mechanisms with the optimal linkage parameters identified, with the appropriate IO variables for the
architecture at hand being represented by the variable name itself.

Linkage Parameter Linkage Architecture
4R RRRP PRRP

v1 v1 v1 1.995
v4 v4 0.0903 0.5114
a1 2.6x10−5 0.7288 a1
a2 0.9999 1.247 1.707
a3 2.3x10−5 a3 a3
a4 1 1 1

Table 2. All identified parameters for the continuous approximate concurrent type and dimensional synthesis of a
planar function generator.

Once all of the error-minimising linkage parameters have been computed, the explicit IO functions that
each of these mechanisms define are computed. These explicit functions are plotted in Fig. 6. At first glance,
it would appear that the 4R function generating architecture is, by far, the best suited for this approximation.
However; one must pay close attention to the link lengths and what these values imply about the linkage
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Fig. 6. Comparison of 4R, RRRP, and PRRP desired and generated functions.

itself. The parameters for the RRRP and PRRP linkages are all reasonable values, but the 4R linkage values
are peculiar; the relative magnitude of (a1,a3) compared to a2 imply that the coupler and base link of this
four-bar linkage are over ten thousand times as long as the input and output links. This strange occurrence
is a result of two facts; the solver is constrained explicitly so that a2

i ≥ 0, meaning that these values can
not ever be identically equal to zero, and secondly that the orientation of a point does not exist - given a
vanishingly small length, it is impossible to define its orientation, and it can either be thought of as not
having an orientation, or possessing every possible orientation simultaneously. Were the link lengths during
this optimisation allowed to converge to zero, it would be observed that links a1 and a2 both converge
to be identically zero; indeed, a1 = a3 = 0 and a2 = a4 = 1 is a consistent trivial solution to any planar
function generation problem with the 4R architecture and must be discarded as a result. Given this fact,
the comparison of the 4R function generator will be omitted in the subsequent analysis. Table 3 shows the
percentage error relative to the desired function of each of the polynomials generated by the RRRP and
PRRP linkages respectively.

Desired Function Generated RRRP Generated PRRP
Percentage Error 0% 0.0143% 0.3685%

Table 3. Percentage error for all viable planar four-bar function generators.

From both Fig. 6 and Table 3, it is clear that the RRRP function generator is, indeed, the most well suited
of the planar four-bar architectures to generate Eq. (30). Now, this answer may seem relatively obvious, as
the equation that was being generated is identical to the equation presented in Eq. (18), but that contrivance
was by design so as to ensure that the results of the algorithm could be verified; it was expected that the
RRRP function generator would outperform its planar compatriots given this fact.
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5. CONCLUSIONS

While a large family of planar four-bar linkage problems exist, most are typically solved by discrete exact
or approximate methods. Function generation has already been solved with a continuous approximation
method [6], driving the cardinality of the originating data set towards infinity, thereby making the design
and structural errors of the function generator to converge, effectively converting a non-linear optimisation
problem to one that is linear. However the integration of the trigonometric Freudenstein equation for IO gen-
eration is quite challenging, and whatever gains in computational efficiency associated with no longer having
to minimise the structural error problem are easily lost due to the computational cost of the integration.

Given the algebraic form of the IO function, however, this integral approach is simplified significantly,
requiring the user to only minimise one single equation with a given set of initial assumptions that may
be readily computed from the algebraic IO function. Integrating the square of the algebraic IO function of
any planar four-bar linkage and subsequently minimising this function provides linkage parameters which
are nearly identical to those developed through the solution to the discrete approximate structural error
problem. Not only are these linkage parameters nearly identical to those generated through a classical
non-linear minimisation approach to determine the structural error of a given linkage, the set of optimal
parameters significantly reduced the error when compared with the precision point method used to generate
the solutions themselves. Given the set of linkage parameters that are generated from this minimisation,
the algebraic IO function may be solved explicitly to define the function that is generated by the linkage,
facilitating its comparison to the desired function through use of a simple integral and percentage error
calculation. This statement may be further extended to comparing every single planar function generator to
each other by way of these same comparative metrics in order to facilitate concurrent type and dimensional
synthesis for any planar function generator problem.

In the future, the methodology presented herein will be extended to any four-bar function generating
linkage. Provided algebraic IO functions for any function generator, including spherical or spatial linkages,
the continuous approximate design error minimisation problem should be able to explicitly compute the
total error minimising linkage parameters without the need to compute the structural error of these linkages,
thus eliminating the need to solve the overtly complex non-linear structural error problem.
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