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Abstract
The algebraic screw pair, or A-pair, represents a new class of kinematic constraint that exploits
the self-motions inherent to a specific configuration of Griffis-Duffy platform. Using the A-pair
as a joint in a hybrid parallel-serial kinematic chain results in a sinusoidal coupling of rotation
and translation between adjacent links. The resulting linkage is termed an A-chain. This paper
reveals the dynamic equations of motion of a single A-pair and examines the impact of the inertial
properties of the legs of the A-pair on the dynamics. A numerical example illustrates the impact
of the leg effects from different perspectives and shows that while the gravity effects of the legs is
significant it may be possible to neglect the leg kinetic energy from the dynamics model.

Keywords: Algebraic screw pair, Griffis-Duffy platform, dynamic equations of motion.

Dynamique d’une paire algébrique de vis

Résumé
La paire algébrique de vis, ou l’A-paire, représente une nouvelle classe de la contrainte cinématique
qui exploite les individu-mouvements inhérents à une configuration spécifique de plateforme de
Griffis-Duffy. Utilisant les A-paires comme joint dans résultats à chaı̂nes cinématiques parallèle-
périodiques hybrides d’un accouplement sinusoı̈dal de rotation et de traduction entre adjacent liens.
La tringlerie en résultant se nomme une A-chaı̂ne. Ce document indique les équations du mou-
vement dynamiques d’une seule A-paire et examine l’impact des propriétés à inertie des jambes
des A-paires sur la dynamique. Un exemple numérique illustre l’impact des effets de jambe de
différentes perspectives et montre cela tandis que les effets de pesanteur des jambes est significatif
il peuvent être possibles pour négliger l’énergie cinétique de jambe du modèle de dynamique.

Mots-clé: Paire algébrique de vis, plateforme de Griffis-Duffy, équations du mouvement dy-
namiques.
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1 INTRODUCTION

The algebraic screw pair [1], or A-pair, is a novel kinematic pair based on a specific configuration
of parallel manipulator called the Griffis-Duffy platform (GDP) [2]. The GDP is a special configu-
ration of the six legged, six degree-of-freedom (DOF) Stewart-Gough platform (SGP) that, in most
configurations, is subject to self-motions regardless of the state of the actuated legs. Self-motions
are situations where the end effector (EE) of the manipulator can move in an uncontrolled manner
without actuator input. The rationale behind proposing the A-pair is based on the hypothesis that
replacing the revolute pairs (R-pairs) in a serial manipulator with this special configuration of par-
allel platform will enhance the rigidity of the serial arm. At the time of this writing an actuated
prototype 4A-chain, shown in Figure 1 a), is being constructed that will be used to investigate
the rigidity hypothesis. The focus of this paper is the examination of the dynamics of a single
A-pair including an examination of the effects of the inertial properties of the legs of the GDP. A
numerical example based on the joints of the prototype manipulator is presented to illustrate the
magnitude of the leg effects in a real application.

2 THE ALGEBRAIC SCREW PAIR

In 1993 Griffis and Duffy [2] introduced the GDP, a special configuration of the SGP characterized
by a planar fixed base and planar moving platform each with six specially placed spherical joint
anchor points for the six legs of the manipulator. The anchor points lie on the perimeter of a
triangle on each of the fixed base and moving platform. Six of the anchor points are located one
on each of the vertices of the two triangles and the remaining six anchor points are located one on
each edge of the triangles such that each leg has one anchor point on the fixed base and one anchor
point on the moving platform. Figure 1 b) shows one example of a GDP, many other configurations

a) b)

Figure 1: a) Prototype 4A-chain currently being constructed. b) Example of a GDP. The configu-
ration shown is the midline-to-vertex configuration.
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exist. Griffis and Duffy proposed controlling the end effector, EE, of the manipulator (affixed to the
moving platform) by controlling the length of each of the six legs. With this definition of a GDP
there are many possible configurations, however the work presented here focuses on one particular
configuration called the midline-to-vertex configuration, illustrated in Figure 1 b), where a leg with
an anchor point at one of the vertices of the fixed base has an anchor point on the midpoint of one
of the edges of the triangle on the moving platform and vice versa, maintaining the same order of
legs around the perimeter of the fixed base and moving platform.

A significant issue with GDPs is self-motions. Self-motions represent instances where a ma-
nipulator can move in an uncontrolled manner without actuator input. For a GDP this means that
the moving platform moves relative to the fixed base without changing the length of the legs.
Husty and Karger address the self-motions of SGPs in general in [3, 4] and focus on GDPs in
[5], showing that most configurations of GDP, including the midline-to-vertex, are always sub-
ject to self-motions regardless of the lengths of the actuated legs throughout the entire reachable
workspace volume. Normally the existence of self-motions, especially throughout the entire reach-
able workspace, is an undesirable characteristic thus the GDP is widely considered to be a failure
as a parallel manipulator. An interesting characteristic of the midline-to-vertex GDP self-motions
is that they possess one well-defined, uncontrollable degree-of-freedom (DOF) [5].

For the remainder of this paper a special GDP configuration is used that possesses the following
constraints: the fixed base and moving platform anchor point triangles are congruent equilateral
triangles with each side of the triangles being of length a and the six legs are all of a fixed length,
l, equal to the height, h, of the triangles as illustrated in Figure 2a). The value of l is

l = h =
a
√

3

2
. (1)

a) b)

Figure 2: a) The height, h, of the congruent equilateral fixed base and moving platform triangles is
equal to the distance from the midpoint of one side of the triangle to the opposite vertex. The sides
of the triangles are of length a. b) Coordinate systems and positions of leg anchor points on the
fixed base and moving platform when θ = 180◦. The ẑ axes of both frames point out of the page.

2011 CCToMM M3 Symposium 3



It turns out that the self-motions of this GDP couple rotation about an axis passing through the
geometric centres of both the fixed base and moving platform triangles with translation along that
axis. Husty and Karger [5] show that the separation of the fixed base and moving platform, d,
is a function of the rotation angle, θ, about the axis common to both the fixed base and moving
platform:

d = ρ sin

(
θ

2

)
, (2)

where ρ is a function of the geometry of the GDP. When θ = 0◦ the GDP is said to be in its home
position. This is a theoretical reference position that can only be achieved if collisions between
the physical elements that constitute the GDP are ignored because in the home position d = 0 and
the fixed base and moving platform are coincident. When the platform is fully extended, similar
to Figure 1 b), θ = 180◦ and d = ρ. This fully extended position and the geometry of the GDP are
used to determine the value of the constant ρ as

d(θ = 180◦) = ρ =
a
√

6

3
. (3)

It is proposed in [6] to utilize the well-defined one DOF self-motion of this special GDP as
a joint in a serial chain in place of standard R-pairs. The motivation behind this is that beyond
the rotation and translation about and along the joint axis the truss-like structure of the parallel
platform makes it very rigid in all other directions. This new type of joint, or kinematic pair, is
called and algebraic screw pair because it couples translation and rotation like a screw pair with
the exception that the pitch of the screw can be represented as an algebraic function of the rotation
angle (tangent of the half-angle substitution is used to represent the trigonometric function as an
algebraic function). The direct kinematics and inverse kinematics of A-chains are explored in [1, 6]
and the workspaces of short A-chains are examined in [7].

The remainder of this paper describes how the dynamic equations of motion are obtained for a
single A-pair using the Lagrange formulation both with the assumption that the leg inertia effects
are negligible and with the legs considered as slender rods. The results are compared to determine
the validity of the massless leg assumption.

3 DYNAMICS

This section discusses the general derivation of the dynamic model using the Lagrangian formula-
tion [8, 9] and applies the technique to the single A-pair first without and then with leg inertia.

3.1 Lagrange Formulation of the Dynamics

The Lagrangian formulation of the dynamic equations of motion utilizes generalized coordinates,
qi, i = 1, . . . , n, to describe the pose of an n degree-of-freedom serial manipulator independent
of the reference frames. The Lagrangian of the system is defined as L = T − U , where T is the
total kinetic energy of the system and U is the total potential energy of the system. The Lagrangian
equations can be written in a compact form as

d

dt

(
∂L
∂q̇

)T
−
(
∂L
∂q

)T
= ξ, (4)
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where q is the vector of the joint variables and ξ is a vector of the non conservative generalized
forces, such as the joint actuator torques and joint torques induced by friction and the forces and
moments applied to the EE. In order to use the Lagrangian equations one must first determine the
total kinetic and potential energy of the system.

3.1.1 Kinetic Energy
The total kinetic energy in a serial chain is given by T =

∑n
i=1(T`i), where T`i is the kinetic energy

of Link i. The kinetic energy of Link i is given by

T`i =
1

2
m`iṗ

T
`i
ṗ`i +

1

2
ωTi RiI

i
`i
RT
i ωi, (5)

where m`i is the mass of Link i, ṗ`i is the linear velocity of the link’s centre of gravity (CG) (p`i
is the position of the CG), ωi is the angular velocity of the link, Ri is the rotation matrix from the
reference frame for Link i to the base frame, and Ii`i is the link’s moment of inertia tensor with
respect to the Link i reference frame. The linear and angular velocities of Link i can be written
as ṗ`i = J

(`i)
P q̇, and ωi = J

(`i)
O q̇, where the J

(`i)
P and J

(`i)
O Jacobian matrices are assembled by

accounting for only the joint motion between the Link i and the base, i.e. the 3× n matrices

J
(`i)
P =

[

(`i)
P1
· · · (`i)Pi

0 · · · 0
]
, J

(`i)
O =

[

(`i)
O1
· · · (`i)Oi

0 · · · 0
]
, (6)

where for a prismatic joint (`i)Pj
= ẑj−1 and (`i)Oj

= 0 and for an R-pair (`i)Pj
= ẑj−1 × (pi − pj−1)

and (`i)Oj
= ẑj−1. The total kinetic energy of the manipulator is written as

T =
∑n
i=1 (T`i) = 1

2
q̇TB(q)q̇, B(q) =

∑n
i=1

(
m`iJ

(`i)T
P J

(`i)
P + J

(`i)T
O RiI

i
`i
RT
i J

(`i)
O

)
. (7)

B(q) is the n× n inertial matrix.

3.1.2 Potential Energy
The total potential energy of the system with non-flexible members is written as

U = −
n∑
i=1

(
mlig

T
0 pli

)
, (8)

where g0 is the gravity acceleration vector in the base frame (g0 =
[

0 0 −g
]T

).

3.1.3 Equations of Motion
The Lagrangian equations are now written as

B(q)q̈ + n(q, q̇) = ξ, where n(q, q̇) = Ḃ(q)q̇− 1
2

(
∂
∂q

(q̇TB(q)q̇)
)T

+
(
∂U(q)
∂q

)T
. (9)

The joint space dynamic model can be written as

B(q)q̈ + C(q, q̇)q̇ + Fvq̇ + Fssgn(q̇) + g(q) = τ − JT (q)he, (10)
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where he is the vector of forces and moments exerted by the EE on the environment, JT (q)he
gives the portion of the actuator torques used to exert that force, Fs is the n × n diagonal matrix
representing the static friction coefficients, Fssgn(q̇) is a simplified model of the static friction and
depends on the direction of the joint velocities, Fv is the n× n diagonal matrix of viscous friction
coefficients, g(q) is the final term of the equation for n(q, q̇) where

gi(θ) =
∂U
∂θi

= −
n∑
j=1

(
m`jg

T
0 

(`j)
Pi

(θ)
)
, (11)

and the elements of the n× n matrix C(q, q̇) are found by

cij =
n∑
k=1

cijkq̇k, cijk =
1

2

(
∂bij
∂qk

+
∂bik
∂qj

+
∂bjk
∂qi

)
, (12)

where cijk are Christoffel symbols of the first type [8] and C(q, q̇) contains the Coriolis and cen-
trifugal terms [8].

3.2 Dynamics of a Single A-Pair Ignoring Leg Inertia

When the inertial properties of the legs are assumed negligible the mass of the legs may be ignored
completely or included in the mass of the moving platform. A reference coordinate systems is
affixed to the fixed base, Σ0, and moving platform, Σ1. The Σ0 origin is located at the geometric
centre of the fixed base triangle, the ẑ0 axis points along the A-pair axis of rotation towards the
moving platform and the x̂0 and ŷ0 axes are arbitrarily assigned in the plane of the fixed base
anchor point triangle. Σ1 is established such that Σ0 and Σ1 are coincident when the A-pair is in
the home position. Σ1 moves with the moving platform as the A-pair is actuated. Figure 2b) shows
how the coordinate systems are affixed to the A-pair and the positions of the leg anchor points. For
this paper the CG of the moving link is considered to be located at the origin of Σ1. The Lagrange
formulation with n = 1 is used to obtain the dynamic equations of motion.

With n = 1 the linear component of the link Jacobian is J(link)
P = ∂plink

∂θ
=
[

0 0 a
√
6

6
cos

(
θ
2

) ]T
and the angular component of the link Jacobian is J

(link)
O =

[
0 0 1

]T
. The B(θ) matrix is

found using Equation (7) as

B(θ) = mlinkJ
(link)T
P J

(link)
P + J

(link)T
O R1I

1
linkR

T
1 J

(link)
O =

a2mlink

6
cos2

(
θ

2

)
+ Izz, (13)

where Izz is mass moment of inertia of the moving platform about the z1 axis. Using the trigono-
metric identity

cos2
(
θ

2

)
=

1 + cos (θ)

2
(14)

The B(θ) and C(θ, θ̇) terms become

B(θ) = a2mlink

12
(1 + cos (θ)) + Izz, C(θ, θ̇) = 1

2

(
∂B(θ)
∂θ

)
θ̇ = a2mlink

24
sin (θ) θ̇. (15)
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The gravitational (potential energy) term is obtained by Equation (11) as

gi(θ) = −mlinkg
T
0 J

link
P =

amlinkg
√

6

6
cos

(
θ

2

)
. (16)

Assembling the dynamic equations in the joint space using Equation (10) gives

τ1 =

(
a2mlink

12
(1 + cos (θ)) + Izz

)
θ̈ +

a2mlink

12
sin (θ) θ̇2 +

amlinkg
√

6

6
cos

(
θ

2

)
. (17)

Equation (17) provides the solution to the inverse dynamics problem which allows for the deter-
mination of the joint torque profile required to follow a provided trajectory (θ(t), θ̇(t) and θ̈(t)
profiles), ignoring friction and external forces. If the torque and joint state are specified Equation
(17) can be rearranged to solve for the acceleration, θ̈, yielding the solution to the direct dynamics
problem.

3.3 Dynamics of a Single A-Pair Considering Leg Inertias

The Lagrange formulation is well suited to modelling the leg effects into the dynamic equations
for A-pairs because the leg influences are found by determining the kinetic and potential energy
of each leg (which are functions of θ) and including them in the Lagrangian. The symmetry of
the A-pair means that the kinetic energy effects of only one leg needs to be examined and then
multiplied by six to account for all legs. The potential energy of each individual leg depends on
the orientation of the A-pair. For a vertical joint (gravity vector parallel to joint axis) all legs
have the same potential energy, in other orientations the potential energy is determined using the
combined CG of the six legs (a point on the joint axis equidistant from the fixed base and moving
platform).

3.3.1 Kinetic Energy of the Legs
The kinetic energy of the leg has two components: the linear motion of the leg CG and the angular
motion about the leg anchor point on the fixed base. The leg is modelled as a slender rod and thus
the kinetic energy from any rotation about the centre axis of the leg is considered to be negligible.

Figure 2b) shows that the position vector of the fixed base anchor point of Leg 1, B1, in Σ0 is
b1 =

[
0 a

√
3

3
0
]T

and the position of the moving platform anchor point for Leg 1, P1, in Σ1

is 1p1 =
[

0 −a
√
3

6
0
]T

. A point on the moving platform projects onto a circle in the x̂0-ŷ0
plane as θ varies, while the ẑ0 position is given by Equation (2). The position vector of P1 in Σ0 is
p1 =

[
a
√
3

6
sin θ −a

√
3

6
cos θ a

√
6

3
sin

(
θ
2

) ]T
. The vector along the leg from B1 to P1 is

rP1/B1 = p1 − b1 =
[
a
√
3

6
sin θ −a

√
3

6
(2 + cos θ) a

√
6

3
sin

(
θ
2

) ]T
, (18)

and the position vector of the CG of Leg 1 is

pleg = b1 +
1

2
rP1/B1 =

[
a
√
3

12
sin θ a

√
3

12
(2− cos θ) a

√
6

6
sin

(
θ
2

) ]T
. (19)
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The linear velocity component Jacobian for the CG of the leg comes from ∂pleg

∂θ
and is

J
(leg)
P (θ) =

[
a
√
3

12
cos θ a

√
3

12
sin θ a

√
6

12
cos

(
θ
2

) ]T
, (20)

and the linear velocity of the leg CG is ṗleg = J
(leg)
P (θ)θ̇. The linear component of the kinetic

energy of Leg 1 with mass Mleg, utilizing Equation (14), is

TPleg
=

1

2
mlegṗ

T
legṗleg =

1

2
mlegJ

(leg)T
P J

(leg)
P θ̇2 =

a2mleg

96
(2 + cos (θ)) θ̇2. (21)

The angular component of the kinetic energy requires the determination of the angular velocity
of the leg. The velocity of P1 with respect to B1, vP1/B1 = ṙP1/B1 is the time rate of change of
rP1/B1 where the only variable that is a function of time is θ. Therefore

vP1/B1 =
[
a
√
3

6
cos θ a

√
3

6
sin θ a

√
6

6
cos

(
θ
2

) ]T
θ̇. (22)

A reference coordinate system for the leg is established with its origin at B1 such that ẑleg points
along the leg from B1 towards P1, ŷleg is parallel to vP1/B1 and x̂leg completes the right hand
system. Since the leg is represented as a slender rod the and there is no rotation about ŷleg (it is
parallel to the velocity vector), only the magnitude of the leg angular velocity of the leg about x̂leg,
ωxleg , is of concern. It is obtained by dividing the velocity of P1 with respect to B1 by the distance
from B1 to P1, which gives

ωxleg =
||vP1/B1||
||rP1/B1||

=
1

3

√
2 + cos (θ)θ̇. (23)

The inertia tensor for the slender rod representing the leg in the leg reference frame is

I
(leg)
leg =


a
√
3

6
mL1 0 0

0 a
√
3

6
mL1 0

0 0 0

 , (24)

where the length of the leg is given in Equation (1). The angular kinetic energy of Leg 1 is

TOleg
=

1

2
ω2
xleg

Ixxleg =

√
3

108
amleg (2 + cos (θ)) θ̇2. (25)

The summation of Equation (21) and Equation(25) represents the total kinetic energy of each
A-pair leg. The total kinetic energy of all of the legs is six times this value.

3.3.2 Potential Energy of the Legs
The potential energy of Leg 1 from Equation (8) is Uleg = mlegg

T
0 pleg, and the gravity term of the

dynamic equations from Equation (11) is

gleg =
∂U
∂θ

= −mlegg
T
0 J

(leg)
P =

mlegga
√

6

12
cos

(
θ

2

)
. (26)

Equation (26) assumes that g0 is parallel to the joint axis. In situations where the A-pair is not
vertical the component of gravity vector that is parallel to the joint axis is used.
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3.3.3 Influence of Legs On the Dynamic Equations
The impact of all of the legs on the dynamic equations of motion is found by multiplying each
leg term by six. The inertial term for the six legs, Blegs(θ), is obtained from Equation (21) and
Equation (25) and the Clegs(θ̇, θ) term comes from Equation (12) to give

Blegs(θ) =
amleg

144

(
9a+ 8

√
3
)

(2 + cos (θ)) , Clegs(θ̇, θ) =
amleg

288

(
9a+ 8

√
3
)

sin (θ) θ̇. (27)

The gravitational term for all six legs, glegs(θ), is six times Equation (26):

glegs(θ) =
mlegga

√
6

2
cos

(
θ

2

)
. (28)

The dynamic equations of motion of the A-pair with the mass effects of the legs included is

τ = (Blink(θ) + Blegs(θ)) θ̈ +
(
Clink(θ̇, θ) + Clegs(θ̇, θ)

)
θ̇ + (glink(θ) + glegs(θ)) . (29)

In general the leg masses are much smaller than the link masses and the Blegs(θ) and Clegs(θ̇, θ)
terms have a much larger denominator than the corresponding terms for the link, therefore the
potential energy term for the legs has a larger impact than the kinetic energy terms, however the
overall influence depends on the ratio of the link mass to the mass of the legs (see Section 5 for a
numerical example). When the difference between the masses is small the leg effects will be more
pronounced and should be included and when the difference is large it may be possible to ignore
the leg effects. The choice to include or exclude leg effects depends on the application and desired
dynamic model fidelity. When additional terms are introduced such as motor inertias, friction and
external applied loads the impact of the leg effects on model fidelity will be further diminished.

4 NUMERICAL EXAMPLE

The impact of the inclusion of leg effects on the dynamics of a single A-pair are best illustrated
by a numerical example. The mass properties for this example are derived from the first joint in
the prototype serial A-chain shown in Figure 1 a) being constructed by the authors of this paper.
The mass of the single link, mlink, is the mass of the A-pair moving platform and the various
components attached to it. The moving platform is approximated as an 10 in by 8 in plate weighing
4.135 lb and the CG of the plate lies on the joint axis. The moment of inertia about the joint axis is
Izz =

ml1

12
(102 + 82). Each of the six legs is a 6 in long slender rod weighing 0.115 lb. The length

of the sides of the fixed base and moving platform triangles are found by rearranging Equation (1)
to get a = 6.928 in. The acceleration due to gravity is g = 386.4 in/ss.

The A-pair is examined in two orientations, the first vertical, where the joint axis is parallel to
the gravity vector and the potential energy terms dominate the dynamic equations and the second
horizontal, where the joint axis is perpendicular to the gravity vector and the kinetic energy terms
dominate. Friction is not included in this analysis. All simulations were run using MATLAB
Simulink software. The assigned joint trajectory (θ(t), θ̇(t) and θ̈(t)) rotated the A-pair from a
stationary θ = 60◦ to a stationary θ = 300◦ in ten seconds. The different dynamic models are
compared using the total work done to follow the assigned trajectory.
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In the vertical orientation the effects of gravity on the A-pair motion are most evident. The four
different versions of the dynamic model compared are: massless legs, leg mass included as part
of the link (lumped mass), leg effects fully accounted for (with legs), and considering only the
leg potential energy terms (PE only). Equation (29) is used to obtain the dynamic equations and
determine the torque required to follow the given trajectory. The appropriate mass values and the
resulting total torque required to follow the desired trajectory are provided in Table 1. The torque
time histories of the various models following the desired trajectory are provided in Figure 3a).

Table 1: Masses and total work done for the different dynamic models of the single A-pair in the
vertical and horizontal orientations.

Total Work
Model mlinkg mlegg Vertical Horizontal

Massless Legs 4.135 lb 0 lb 28.52 in-lb 0.0897 in-lb
Lumped Mass 4.825 lb 0 lb 33.28 in-lb 0.1047 in-lb

With Legs 4.135 lb 0.115 lb 30.89 in-lb 0.0916 in-lb
PE Only 4.135 lb 0.115 lb 30.89 in-lb N/A
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(a) Vertical orientation.
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Figure 3: Torque vs. time plots for the various models of an A-pair.

When the A-pair axis is horizontal the gravity effects are removed and, since friction is ignored,
the inertial effects of the link and legs dominate the dynamic equations. Three versions of the
dynamic model, massless legs, lumped mass, and with legs are compared in Table 1. The torque
time histories of the various models following the desired trajectory are provided in Figure 3b).

4.1 Discussion

The two different orientations of the A-pair considered illustrate the impact of the inertial effects
of the legs on the potential energy terms (vertical) and kinetic energy terms (horizontal). Analysis
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of the results provides some insight as to how to account for the leg effects in longer chains. The
decision as to include leg effects or not and which model to use depends on the desired fidelity and
the relative masses of the links and legs.

When the A-pair axis is vertical the potential energy effects of the link and legs dominate the
dynamic equations (with friction ignored) and the kinetic energy effects are essentially negligible.
For the masses used in the numerical example the total work done for the massless legs model is
6% less than that of the full leg model which is in turn 7% less than the lumped mass model. If
the difference between the link and leg mass is increased these percent differences decrease. For
example if the link mass increases to 8 lb there is a 4% difference in total work done between
the full leg and lumped mass models. While the reason for the underestimation of the magnitude
of the required torque by the massless legs model is obvious (the leg mass has been completely
ignored) the difference between the lumped mass and full leg models results from the difference in
the change in potential energy of the link versus the leg. As the trajectory is followed the difference
in height of the link CG from the minimum to the maximum is 2.829 in while the CG of the legs
varies by only 1.414 in. In the lumped mass model the change of potential energy for the leg mass
is twice the actual value. The combined potential energy of the six legs can be determined by a
point mass equal to the total mass of the six legs on the joint axis equidistant to the fixed base and
moving platform planes. Using this CG model allows for the determination of the leg potential
energy when the A-pair joint axis is tilted away from vertical.

In the horizontal orientation the potential energy terms go to zero and only the kinetic energy
terms are evident. The lumped mass model overestimates the total work by 14% while the massless
leg model underestimates the total work by only 2%. This suggests that for the masses used in this
example the kinetic energy effects of the legs may be considered to be negligible.

The results of this numerical example suggests that little fidelity is lost if the leg kinetic energy
terms are ignored, however the leg potential energy terms are important.

5 CONCLUSIONS AND FUTURE CONSIDERATIONS

This paper presents the derivation of the dynamic equations using the Lagrange formulation for
a single A-pair with and without the mass effects of the A-pair legs. The development of the
equations is presented in such a way that similar techniques could be used to obtain the dynamic
equations for longer chains constructed using A-pairs or any other simple kinematic pair. The
inclusion of the leg mass effects into the dynamic equations is explored theoretically and via a
numerical example. The gravitational effects of the combined six legs have a larger impact on
the overall dynamic model relative to the inertial effects. The decision to include the leg effects
depends on the desired model fidelity and the relative difference in mass between the link and legs.
As the ratio of link mass to leg mass increases the impact of the legs on the dynamics decreases.
In the numerical example it is reasonable to ignore the inertial leg effects, however the inclusion
of the gravitational effects of the legs is important. This paper explores the dynamics of a single
A-pair and future work will extend to chains with more joints. There are some aspects of the single
A-pair dynamics that must be examined in more detail. This paper has ignored friction, motor, and
transmission effects in the dynamic analysis. Motors and transmissions will add mass to the links,
further diminishing the the effects of legs on the overall dynamics. The work presented in this
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paper is a starting point for the process of sizing and selecting motors. Also, the inclusion of a
friction model will further diminish the percentage of torque required to overcome the leg mass
effects, thereby further decreasing the impact of the legs on the dynamic model.
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