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ABSTRACT
The dynamic analysis of novel architectures of planar and spatial spring-loaded cable-loop driven parallel

mechanisms is introduced in this paper. First, the geometry of the mechanisms is briefly described and the
inverse kinematic equations are given. Then, the cable forces are obtained for both the static and dynamic
conditions. Due to the cable loops in the mechanisms, cables might become slack when the end-effector
moves with high acceleration. Therefore, it should be verified that the cables can be maintained in tension
for a certain range of trajectory frequency. Based on the static force and the Newton-Euler formulation, the
natural frequencies and the corresponding ratio of the amplitudes for these two mechanisms are also found.

Keywords: cable-loop-driven parallel mechanism; dynamics; natural frequency.

ANALYSE DYNAMIQUE ET FRÉQUENCES NATURELLES DE MÉCANISMES PARALLÈLES
PLANS ET SPATIAUX ENTRAÎNÉS PAR BOUCLES DE CÂBLES

RÉSUMÉ
L’analyse dynamique de nouvelles architectures de mécanismes parallèles plans et spatiaux entraı̂nés par

boucles de câbles est présentée dans cet article. Tout d’abord, la géométrie des mécanismes est brièvement
décrite et les équations cinématiques sont données. Ensuite, on en déduit les forces dans les câbles pour
des conditions statiques et dynamiques. En raison des boucles de câbles dans les mécanismes, les câbles
pourraitent se relâcher lors du déplacement de l’effecteur avec de fortes accélérations. Par conséquent, il
convient de vérifier que les câbles puissent être maintenus en tension pour une certaine plage de fréquence
de trajectoire. En utilisant l’expression des efforts statiques et la formulation de Newton-Euler, la fréquence
naturelle et le rapport des amplitudes correspondant à ces deux mécanismes sont également présentés.

Mots-clés : mécanismes parallèles entraı̂nés par boucles de câbles ; dynamique ; fréquence naturelle.
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1. INTRODUCTION

In conventional cable-driven parallel mechanisms, one end of each of the cables is wound on a fixed
actuated drum while the other end is attached to the end-effector. Several issues arise in the design and
control of cable-driven parallel mechanisms including workspace, dynamics and vibrations. In [1, 2], static
models are used to obtain the wrench-closure workspace (force-closure workspace) while the so-called
dynamic workspace is considered in [3]. The dynamic analysis of fully restrained cable-driven parallel
mechanisms is studied in [4] while the dynamic analysis of the KNTU cable-driven parallel mechanism is
studied in [5]. When large accelerations are performed, the compliance of the cables must be accounted for
in order to properly predict the behaviour of the mechanism. In [6], the vibrations of general 6-DOF cable-
driven parallel manipulators caused by cable flexibility are analyzed using natural frequencies. Similarly,
the elastic deformation and the damping behaviour are considered in the dynamic model proposed in [7].

All the above cited works deal with conventional cable-driven parallel mechanisms. Most conventional
cable-driven parallel mechanisms are redundantly actuated due to the unilaterality of the cable forces. How-
ever, alternative transmission strategies have been recently proposed in order to alleviate the drawbacks of
fixed spool transmissions and actuation redundancy. In [8], the MARIONET cable-driven robot using linear
actuators was presented. Also, a Cartesian cable-driven mechanism was introduced in [9], that consists of
a rigid-link Cartesian skeleton frame and a cable driven system which forms a cable loop that only requires
three actuators to control the three DOFs. In order to avoid actuation redundancy, sometimes gravity[10, 12],
dynamic forces[11] or passive springs [12] are also applied in the mechanism.

Based on the same motivation, a modular spring-actuator cable-loop system was introduced and applied
to a planar spring-loaded cable-loop-driven parallel mechanism in [13]. The main objective of this modular
system is to avoid actuation redundancy by introducing compliance between the end effector and the actuator
while ensuring that the mechanism remains rigid with respect to external forces until the preload of the
system is exceeded. The modular spring-actuator cable-loop system is also applied to a spatial mechanism
in [14]. In these mechanisms, cables form loops and a spring is attached in each cable loop. Such actuating
modules depart significantly from conventional cable-driven mechanisms. Therefore, the dynamics and
vibration analyses reported in the literature do not apply.

In this paper, a dynamic analysis of the cable-loop-driven parallel mechanisms introduced in [13, 14]
is presented. First, the inverse kinematics and the static analysis are recalled. Then, a dynamic model is
proposed. The model is then used to determine the frequency range in which the mechanism can operate.
Finally, the natural frequencies and the corresponding amplitude ratios are found based on the static cable
forces and the Newton-Euler formulation.

2. INVERSE KINEMATICS

Demonstration models of the planar and spatial spring-loaded cable-loop-driven parallel mechanisms are
shown in Fig. 1. The mechanisms are now briefly described for the sake of completeness of this paper. More
details can be found in [13] and [14].

The structure of the basic spring-loaded cable loop on which the mechanisms are based is shown in
Fig. 2. Referring to Fig. 2 — which represents schematically the ith loop of a cable-loop-driven mechanism
— spring NiHi is attached to the ground at point Ni. Two pulleys Ci1 and Ci2 are connected to the other end of
the spring at Hi. Each cable loop passes around these pulleys and the fixed pulleys to complete the loop. The
loop is closed on the end-effector P. The cable loops are driven by linear actuators Mi. The cable segments
AiCi1, DiCi1, Ci1Hi, JiHi and the spring HiNi are parallel to each other. The cable segments DiEi, Ci2Ei, JiCi2
and Ci2Fi are also parallel to each other. The positions of the fixed pulleys Ai and Bi can be expressed as ai

and bi respectively. The lengths of the cable segments Ci1Hi, Ci2JiHi, MiDiCi1AiP and MiEiCi2FiGiBiP are
constant. If one length of the cable segments DiCi1AiP or EiCi2FiGiBiP decreases, the other will increase
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(a) Planar mechanism (b) Spatial mechanism

Figure 1. Demonstration models of the planar and spatial spring-loaded cable-loop-driven parallel mechanisms, one
of the loops is highlighted.

Figure 2. Schematic representation of one spring-loaded cable-loop.

by the same amount as the actuator is moving, due to the closed cable loop. The number of fixed pulleys in
one loop of the spatial mechanism is different from the number of fixed pulleys included in one loop of the
planar mechanism but the operating mode is the same.

The structure of the planar mechanism is shown in Fig. 3. The mechanism comprises two spring-loaded
cable loops. The loops are arranged symmetrically. The four fixed pulleys Ai and Bi, i = 1,2, form a square.
The spatial mechanism comprises three spring-loaded cable loops as shown in the demonstration model,
the fixed pulleys through which the cables pass first from the end-effector form an octahedron as shown in
Fig. 4.

The lengths of the cable segments PAi and PBi vary according to the position of point P and these vari-
ations are induced by the displacement of the actuators and the deformation of the springs. The reference
position is taken as the centre of the square or of the octahedron. Assuming the reference position of the
end-effector to be po, for the ith cable loop we have

2δi− lmi = |PAi|− |PoAi|, (1)

2δi + lmi = |PBi|− |PoBi|, (2)

where lmi is the displacement of the ith actuator and δi is the deformation of the ith spring. With these
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Figure 3. Schematic representation of the symmetric 2-DOF spring-loaded cable-loop-driven parallel mechanisms.

Figure 4. Octahedron formed by the six fixed pulleys.

equations (Eqs. (1) and (2)), lmi and δi can be found as

δi =
1
4
(nai +nbi),

lmi =
1
2
(nbi−nai),

where nai = |PAi|− |PoAi|, nbi = |PBi|− |PoBi|.
Differentiating the expressions for lmi, the velocity equation and the acceleration expression can be found

as

l̇m = Jlṗ,

l̈m = Jlp̈+Klṗ,

where
Jl =−1

2
(Sb−Sa)T , Kl =−1

2

[
∂ (Sb−Sa)T

∂x ṗ ∂ (Sb−Sa)T

∂y ṗ
]
.

The unit vectors defined along the direction of the cable segments going from the end-effector to the fixed
pulleys through which the cables first pass are noted sai and sbi, with

sai =
ai−p
||ai−p||

, sbi =
bi−p
||bi−p||

and matrices Sa = [sa1, . . . ,sa j], Sb = [sb1, . . . ,sb j] are formed with these vectors, where j = 2 for the planar
mechanism and j = 3 for the spatial mechanism.
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From the above equations, it can be observed that the inverse kinematic equations only depend on the po-
sition, velocity and acceleration of the end-effector and are independent from the external forces, assuming
that the cables are all under tension.

3. STATIC ANALYSIS

Neglecting friction between the cable and pulleys, the cable forces fai, fbi in the cable segments between
the actuators and the end-effector are assumed to be uniform. Considering the static equilibrium of the
end-effector, we have

Safa +Sbfb = fe (3)

where fa = [ fa1, fa2, fa3]T and fb = [ fb1, fb2, fb3]T are the forces in the cable segments and fe = [ fex, fey, fez]T

is the external force applied on the end-effector. For the planar mechanism, fa3 = fb3 = fez = 0 and vectors
fa, fb and fe have only two components.

The relationship between the ith spring force, fsi, and its deformation, δi, is assumed to be given by

fsi = foi + kiδi, (4)

where foi is the preload and ki is the stiffness of the spring. Also, it can be observed that the forces in
the springs are independent from the external forces. If the cables are all under tension, according to the
geometry of the mechanism, the spring forces and the cable forces have the following relationship:

fs = 2fa +2fb, (5)

where fs = [ fs1, fs2]T for the planar mechanism and fs = [ fs1, fs2, fs3]T for the spatial mechanism.
For one cable loop, one has fsi = 2 fai +2 fbi which is the result of the coupling between the two sides of

the loop, as illustrated in Fig. 5. The sum of the cable forces fai and fbi is equal to one half of the spring
force fsi according to Eq. (5). However, the cable forces fai and fbi vary for different external forces. Since
the reference configuration is in the centre of the square or the octahedron, the ith spring must be extended
in most configurations (the configurations that are not on the corresponding diagonal). Depending on the
sign of the stiffness of the springs, this extension results in a larger(k > 0) or smaller(k < 0) force fsi (see
Eq. (4) ). It can be observed that in order to keep the mechanism within its working range, the maximum
available force in a cable loop is fsi/2 (see also Fig. 5).

f
ai

f
bi

f
si

2

f
si

2

Figure 5. Illustration of fsi = 2 fai +2 fbi for a given configuration.

Rewriting Eq. (5) as fa = fs
2 − fb and substituting fa into Eq. (3), one has

Mbfb = fbe (6)
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where Mb = Sb−Sa and fbe = fe− 1
2 Safs. The equations that allow one to calculate the cable forces fa are

obtained using the same method. Combining the equations for fa and fb, one has

Mf = f f (7)

where

M =
[
−Mb 0

0 Mb

]
, f =

[
fa

fb

]
, f f =

[
fae

fbe

]
,

and fae = fe− 1
2 Sbfs.

When the mechanism is in static equilibrium, the actuating force fm can be written as

fm = fa− fb

where fm = [ fm1, fm2]T for the planar mechanism and fm = [ fm1, fm2, fm3]T for the spatial mechanism.

4. DYNAMIC MODEL

The dynamic equations of the mechanism provide the relationships between actuation and end-effector
forces acting on the mechanism and the acceleration and motion trajectories that result. Usually, cable-
driven parallel mechanisms have simpler dynamic models than link-driven parallel mechanisms because the
mass of the cables can be neglected. Dynamic equations of motion can be obtained from the Lagrangian
formulation or the Newton-Euler formulation. Here, the Newton-Euler formulation is used to obtain the
dynamic equations of the planar and spatial spring-loaded cable-loop-driven parallel mechanisms.

It is first assumed that the masses of the springs and the free pulleys are small enough to be neglected.
Neglecting the friction between the cables and pulleys and considering only the mass of the end-effector
mp and the mass of the actuators mm, the forces acting at the end-effector and on the moving fixtures and
pulleys fai, fbi are assumed to be uniform. The dynamic equations for the end-effector and the actuators can
be found as

Mm l̈m = fb− fa + fm, (8)

Mpp̈ = Safa +Sbfb. (9)

where Mm and Mp are the mass matrix of the actuator and the end-effector, respectively. Assuming that
the actuators have the same mass mm and that the mass of the end-effector is mp, then Mm = mmE and
Mp = mpE where E is the identity matrix, which is of dimension 2×2 for the planar mechanism, 3×3 for
the spatial mechanism.

From Eqs. (9) and (5), the cable forces fa, fb can be found as[
fa

fb

]
=
[

E+S−1
ba Sa −S−1

ba
−S−1

ba Sa S−1
ba

][ 1
2 fs

Mpp̈

]
(10)

since matrix Sba = Sb−Sa is always invertible within the square or the octahedron which is formed by the
fixed pulleys Ai and Bi. When the cable forces fa and fb are known, the actuating force fm can be found using
the dynamic equation of the actuators, Eq. (8), as

fm =
1
2
(Sb−Sa)−1(Sa +Sb)fs−2(Sb−Sa)−1Mpp̈+Mm(Jlp̈+Klṗ). (11)

Moreover, the modular actuator-spring systems are all assumed to have the same characteristics, i.e.,
fo = foi and k = ki. Then, the cable extension forces fai and fbi have the same properties for each mechanism.
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Since cables can only operate in tension, not compression, it should be verified that the cable forces fa and
fb remain positive for certain families of trajectories of the end-effector. Then, the frequency limitation
for the mechanisms can be found. In order to preserve symmetry, the origin of the fixed coordinate frame
O− xy is located at the centre of the rectangle A1A2B1B2 for the planar mechanism and the fixed coordinate
frame for the spatial mechanism is also located at the centre of the octahedron as shown in Fig. 4. The
expressions appearing in Eq. (10) are rather complicated. In order to get some basic dynamic characterics of
the mechanisms, it is assumed that the quadrilateral of the planar mechanism is a square with 2r side length
and the regular octahedron of the spatial mechanism has a diagonal length 2a.

5. FEASIBLE FREQUENCY RANGE AND REQUIRED ACTUATING FORCE

The static workspace of the planar mechanism always includes the line segments connecting the corre-
sponding centre points of the four sides of the square. Varifying the spring characteristics, the direction of
maximum change of the workspace is along the diagonals of the square [13]. For the spatial mechanism
[14], the static workspace is like a ball with six bumps which point to the six pulleys on the diagonal direc-
tions. From the numerical results, it can be observed that the largest variation of the workspace boundary
caused by the variation of the springs stiffness is the along the diagonal directions of the octahedron. The
inscribed sphere of the octahedron (the radius is

√
3

3 a) is always included in the workspace. It is intended
to find the frequency range of operation and the required actuating force for the sinusoidal trajectories in
special directions.

Substituting the expression of the prescribed trajectory into the cable force equations in dynamic condi-
tions, Eq. (10), and ensuring that the cable forces are positive, inequalities relating the trajectory parameters
and the spring characteristics can be obtained. The maximum trajectory frequency can be found based on all
the inequalities and considering the physical meanings of the parameters. Then, substituting the trajectory
with the feasible maximum frequency into the actuating force equations, Eq. (11), the required maximum
actuating force can be obtained as the largest extremum value of these equations.

The analysis reveals that the maximum feasible frequency for the centre line directions of the planar
mechanism is

ωmax =

√
fo

mpr

√
2+ kr

2 fo
(1+
√

5−2
√

2)

4
√

5
,

while the maximum required actuating force can be written as

fm,max =

[
4
5

+(
1
5

+
√

5
5
− 2
√

2
5

)
kr
fo

]
mm fo

mp
.

The maximum feasible frequency of the sinusoidal trajectory with an amplitude r in the diagonal direction
and the required maximum actuating force are

ωmax =

√√√√ fo

mpr

[
(
1
2

+
1

2
√

3
)+

kr
4 fo

(1−
√

2
3
)

]
,

fm,max = fo(1−
√

3
3

)+
mm fo

mp

[
(
1
2

+
1

2
√

3
)+

kr
fo

(
1
4
−
√

2
4
√

3
)

]
.

For the centre line direction of the spatial mechanism, the maximum trajectory frequency and actuating
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force for the moving range of the inscribed sphere diameter is

ωmax =

√√√√ fo

mpa

[
3
√

2
2

+
ka
4 fo

(3+
√

3−3
√

2)

]
,

fm,max =
fo

2
(1+

mm

mp
)

[
1+

ka
4 fo

(
√

2+
√

6
3
−2)

]
.

For the diagonal direction, the trajectory of the end-effector is prescribed as

p = λasin(ωt)e,

where λ > 0 and e is one of the unit vectors along the three coordinate axes. Then, the maximum trajectory
frequency can be determined as

ωmax =

√
fo

mpa

√√
1+λ 2 +2λ + ka

fo
λ (
√

1+λ 2−1)

2λ
√

1+λ 2
, s.t. λ ∈ (0,

√
3

3
),

ka
fo

< 0.

fm,max = (
1
2

+
mm

2mp
) fo +

mmλ

mp
√

1+λ 2
fo

[
1+

ρ

2
(
√

1+λ 2−1)
]
.

The sine curve trajectories on the two special directions were used to get the basic requirements of the
mechanism’s parameters. However, there are many kinds of trajectories and it is not sufficient to limit
ourselves to special directions. In the following section, the natural frequency is analyzed.

6. NATURAL FREQUENCY

The natural frequency and the corresponding amplitude ratios are obtained based on the Newton-Euler
formulation using the static forces for certain configurations.

The dynamic equation for the end-effector Eq. (9) can be rewritten as

g = Safa +Sbfb = Mpp̈ (12)

where g = [g1(x,y),g2(x,y)]T for the planar mechanism, g = [g1(x,y,z),g2(x,y,z),g3(x,y,z)]T for the spatial
mechanism. The cable forces under static conditions can be obtained using Eq. (7). Assuming that fai and
fbi, i = 1,2, are constant and substituting them into the Taylor series expansion of the initial end-effector
dynamic equation (Eq. (12)), the above dynamic equations become partial differential equations in x and y.
Rearranging these equations, we get

Mpp̈+Gṗ = 0 (13)

where

G =
∂g
∂p

.

Assuming pp = [xpest ,ypest ,zpest ]T (the last component is omitted for the planar mechanism), and substitut-
ing into the above equation, we get

(sMp +G)pp = 0

This equation is satisfied for any pp if
sMp +G = 0.
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Figure 6. Plots of the natural frequencies of the planar mechanism with constant force springs.

In other words, the natural frequencies si are related to the eigenvalues of matrix G, and the eigenvectors of
matrix G corresponding to the value of the natural frequencies are the amplitude ratios.

It can therefore be shown that the natural frequencies at the reference position of the mechanisms are all
equal. For the planar mechanism, the two natural frequencies at the reference configuration are

sio =
fo

2
√

2mpr
, i = 1,2.

The three natural frequencies at the reference configuration for the spatial mechanism are

sio =
a fo

mp
, i = 1,2,3.

Normalizing the parameters for the planar mechanism as r = 1, mp = 1, fo = 1, and assuming that the
springs are constant force springs, then the two natural frequencies are shown in Fig. 6. The corresponding
amplitude ratios are shown in Fig. 7. In these figures, the small black dots represent the position of the
end-effector and the small line segments represent the corresponding ratio of the amplitudes. If the stiffness
of the springs is not zero, the shape of surfaces corresponding to the two natural frequencies are similar
to the surfaces shown in Fig. 6. Also, the natural frequencies increase when the stiffness of the springs is
increased.

Normalizing the parameters of the spatial mechanism as a = 1 and mp = 1, and assuming that the springs
are constant force springs with fo = 10, the natural frequencies for z = 0 and z =±0.2 are shown in Fig. 8.

It can be observed, from these figures that the difference between the natural frequencies increases when
the configuration is moved away from the reference position. Since the reference position of the end-
effector lies in the centre of the workspace [13, 14], the mechanisms should work below the smallest natural
frequency in order to avoid uncontrolled vibrations.

7. CONCLUSIONS

The dynamic analysis of cable-loop driven parallel mechanisms was addressed in this paper. Such mech-
anisms cannot be analyzed using the dynamic models found in the literature because of the closed-loop
cable architecture. Therefore, a new model was developed based on the Newton-Euler formulation. The
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Figure 7. Ratio of the amplitudes for the planar mechanism with constant force springs.
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Figure 8. The three natural frequencies of the spatial mechanism.

dynamic model obtained was used to determine the frequency limitations of fundamental trajectories in or-
der to assess the capabilities of the mechanisms. The natural frequencies and the amplitude ratios were also
found. The results obtained provide insight into the dynamic behaviour of the mechanisms and can be used
as design aids. Future work includes the design of actuated prototypes.
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